
FoLiA: Format for Linguistic
Annotation - Documentation

Release v2.0 (rev 9.0)

Maarten van Gompel

Aug 19, 2021

Contents

1 Introduction 3
1.1 Annotation Types . 4
1.2 Vocabulary sets . 8
1.3 Validation . 8
1.4 Metadata . 9

1.4.1 Annotation Declarations . 9
1.4.2 Provenance Data . 9
1.4.3 Document Metadata . 9

1.5 Document structure . 10
1.6 Annotation Instances . 11

1.6.1 Common attributes . 11
1.6.2 Identifiers . 13

1.7 Speech . 13
1.7.1 Example . 14

1.8 Hyperlinks . 14

2 Metadata 17
2.1 Annotation Declarations . 17
2.2 Set definitions . 18
2.3 Document Metadata . 19
2.4 Submetadata . 20
2.5 Provenance Data . 20

3 Set Definitions (Vocabulary) 31
3.1 Introduction . 31
3.2 Classes . 33
3.3 Class Hierarchy . 33
3.4 Subsets . 34

3.4.1 Features . 34
3.5 Constraints . 36
3.6 SKOS . 41

4 Annotation Types 43
4.1 Content Annotation . 47

4.1.1 Text Annotation . 47
4.1.2 Phonetic Annotation/Content . 55
4.1.3 Raw Content . 58

4.2 Higher-order Annotation . 60
4.2.1 Correction Annotation . 61
4.2.2 Gap Annotation . 71
4.2.3 Relation Annotation . 75

i

4.2.4 Span Relation Annotation . 80
4.2.5 Metric Annotation . 83
4.2.6 String Annotation . 86
4.2.7 Alternative Annotation . 91
4.2.8 Comment Annotation . 96
4.2.9 Description Annotation . 99
4.2.10 External Annotation . 101

4.3 Inline Annotation . 103
4.3.1 Part-of-Speech Annotation . 104
4.3.2 Lemmatisation . 111
4.3.3 Domain/topic Annotation . 116
4.3.4 Sense Annotation . 118
4.3.5 Error Detection Annotation (DEPRECATED) . 121
4.3.6 Subjectivity Annotation (DEPRECATED) . 121
4.3.7 Language Annotation . 121

4.4 Span Annotation . 125
4.4.1 Syntactic Annotation . 127
4.4.2 Chunking . 130
4.4.3 Entity Annotation . 132
4.4.4 Dependency Annotation . 137
4.4.5 Time Segmentation . 141
4.4.6 Coreference Annotation . 145
4.4.7 Semantic Role Annotation . 149
4.4.8 Predicate Annotation . 151
4.4.9 Observation Annotation . 153
4.4.10 Sentiment Annotation . 155
4.4.11 Statement Annotation . 158
4.4.12 Modality Annotation . 161
4.4.13 Group Annotations: Inline Annotations on Span Annotations 165

4.5 Structure Annotation . 167
4.5.1 Token Annotation . 169
4.5.2 Division Annotation . 171
4.5.3 Paragraph Annotation . 174
4.5.4 Head Annotation . 177
4.5.5 List Annotation . 180
4.5.6 Figure Annotation . 183
4.5.7 Vertical Whitespace . 187
4.5.8 Linebreak . 191
4.5.9 Sentence Annotation . 194
4.5.10 Event Annotation . 197
4.5.11 Quote Annotation . 200
4.5.12 Note Annotation . 202
4.5.13 Reference Annotation . 205
4.5.14 Table Annotation . 211
4.5.15 Part Annotation . 217
4.5.16 Utterance Annotation . 219
4.5.17 Entry Annotation . 221
4.5.18 Term Annotation . 229
4.5.19 Definition Annotation . 229
4.5.20 Example Annotation . 229
4.5.21 Hidden Token Annotation . 229

4.6 Subtoken Annotation . 233
4.6.1 Morphological Annotation . 233
4.6.2 Phonological Annotation . 237

4.7 Text Markup Annotation . 239
4.7.1 Style Annotation . 239
4.7.2 Hyphenation . 242
4.7.3 Horizontal Whitespace . 244

ii

5 Foreign Annotation 249

6 Querying 251
6.1 XPath . 251
6.2 FoLiA Query Language (FQL) . 252

6.2.1 Global variables . 252
6.2.2 Provenance . 253
6.2.3 Declarations . 253
6.2.4 Actions . 254
6.2.5 Text . 256
6.2.6 Query Response . 257
6.2.7 Span Annotation . 258
6.2.8 Corrections and Alternatives . 259
6.2.9 Dealing with context . 261
6.2.10 Relations . 263
6.2.11 Shortcuts . 263

7 Form 265

8 Implementations 267
8.1 Libraries . 267
8.2 Tools . 269

9 Guidelines 271
9.1 For data creators/publishers . 271
9.2 For developers . 271
9.3 Conventions . 272

Bibliography 273

iii

iv

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

version: 2.5.0

Abstract

FoLiA, an acronym for Format for Linguistic Annotation, is a data model and file format to represent
digitised language resources enriched with linguistic annotation, e.g. linguistically enriched textual doc-
uments or transcriptions of speech. The format is intended to provide a standard for the storage and
exchange of such language resources, including corpora and to promote interoperability amongst Natural
Language Processing tools that use the format.

Contents 1

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

2 Contents

CHAPTER 1

Introduction

version: 2.5.0
FoLiA, an acronym for Format for Linguistic Annotation, is a data model and file format to represent
digitised language resources enriched with linguistic annotation, e.g. linguistically enriched textual documents
or transcriptions of speech. The format is intended to provide a standard for the storage and exchange of
such language resources, including corpora and promote interoperability amongst Natural Language Processing
tools that use the format.
Our aim is to introduce a single rich format that can accommodate a wide variety of linguistic annotation types
through a single generalised paradigm. We do not commit to any label/vocabulary set, language or linguistic
theory. This is always left to the developer of the language resources, and provides maximum flexibility. We
merely specify the broad category of annotation types and provide other mechanisms that allow resource
constructors to formalize vocabulary sets.
FoLiA has the following characteristics:

• Expressive: The format is highly expressive, annotations can be expressed in great detail and with
flexibility to the user’s needs, without forcing unwanted details. Moreover, FoLiA has generalised
support for representing annotation alternatives, and elaborate provenance data, i.e. data on who or
what performed certain annotations and through which NLP pipelines the document has gone.

• Generic - We apply the same paradigm to a wide variety of annotation types, assuring a uniform and
consistent way of representing different annotation.

• Specific - FoLiA very explicitly defines various annotation types. This means it choses not to subscribe
to a looser paradigm where users themselves can invent their annotation types, but keeps this centralised
to promote compliance to a more rigid structure. This ensures that any FoLiA-capable tools know what
to expect.

• Formalised - The format is formalised, and can be validated on both a shallow and a deep level (the
latter including tagset validation), and easily machine parsable, for which tools are provided.

• Practical - FoLiA has been developed in a bottom-up fashion right alongside applications, programming
libraries, and other toolkits and converters. Whilst the format is rich, we try to maintain it as simple
and straightforward as possible, minimising the learning curve and making it easy to adopt FoLiA in
practical applications.

The FoLiA format is XML-based and makes mixed use of inline and stand-off annotation. XML is an inherently
hierarchic format and FoLiA does justice to this by utilising a hierarchic, inline, setup where possible. Inline
annotation is used for annotations pertaining to singular structural elements such as words/tokens, whilst

3

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

stand-off annotation in separate annotation layers is adopted for annotation types that span over multiple
structural elements.
FoLiA favours a single-document approach, meaning that a text and all linguistic annotations on that
text are stored in a single XML file. This facilitates keeping all annotation layers in sync with eachother
and prevents incomplete or loss of information. The single-document approach is not just limited to the
annotation and text, but also encompasses the document structure and document mark-up (e.g. basic text
styling). Nevertheless, there exists a FoLiA mechanism that does allow you to take a more stand-off approach
and store annotations in separate external FoLiA documents if absolutely needed.
This documentation is limited to describing, in great detail, how FoLiA works, for more about the motivation
behind the construction of FoLiA and how it compares to somewhat similar or comparable initiatives such
as TEI [Burnard2007] , LAF [Ide2004] , TCF [Heid2010], NAF [Fokkens2014], Paula XML, Tiger XML, and
others, we refer you to our research paper providing a descriptive and comparative study: [vanGompel2014] .

1.1 Annotation Types

FoLiA defines various XML elements to represent document structure and various annotations, we can divide
these XML elements into several generic annotation groups. In each of these categories, FoLiA defines specific
elements for specific annotation types. This is a deliberate limit on the extensibility of FoLiA in favour of
specificity; i.e. you can’t just add your own annotation type. If a particular annotation type is not properly
accommodated yet, contact the FoLiA developers and we will see how we can extend FoLiA.
For good measure, we again emphasise that this is a limitation on annotation types only, not on the vocabulary
the annotation types make use of, which is deliberately separated from the FoLiA standard itself. The next
section will elaborate on this.
Below are the categories and underlying annotation types, you can click each for exhaustive information (but
please finish this introductory chapter first):

• Structure Annotation – This category encompasses annotation types that define the structure of a
document, e.g. paragraphs, sentences, words, sections like chapters, lists, tables, etc… These types
are not strictly considered linguistic annotation and equivalents are also commonly found in other
document formats such as HTML, TEI, MarkDown, LaTeX, and others. For FoLiA it provides the
necessary structural basis that linguistic annotation can build on.

– Token Annotation – <w> – This annotation type introduces a tokenisation layer for the document.
The terms token and word are used interchangeably in FoLiA as FoLiA itself does not commit
to a specific tokenisation paradigm. Tokenisation is a prerequisite for the majority of linguistic
annotation types offered by FoLiA and it is one of the most fundamental types of Structure
Annotation. The words/tokens are typically embedded in other types of structure elements, such
as sentences or paragraphs.

– Division Annotation – <div> – Structure annotation representing some kind of division, typically
used for chapters, sections, subsections (up to the set definition). Divisions may be nested at will,
and may include almost all kinds of other structure elements.

– Paragraph Annotation – <p> – Represents a paragraph and holds further structure annotation such
as sentences.

– Head Annotation – <head> – The head element is used to provide a header or title for the structure
element in which it is embedded, usually a division (<div>)

– List Annotation – <list> – Structure annotation for enumeration/itemisation, e.g. bulleted lists.
– Figure Annotation – <figure> – Structure annotation for including pictures, optionally captioned,

in documents.
– Vertical Whitespace – <whitespace> – Structure annotation introducing vertical whitespace
– Linebreak –
 – Structure annotation representing a single linebreak and with special facilities

to denote pagebreaks.

4 Chapter 1. Introduction

http://tei-c.org
https://weblicht.sfs.uni-tuebingen.de/weblichtwiki/index.php/The_TCF_Format

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Sentence Annotation – <s> – Structure annotation representing a sentence. Sentence detection is
a common stage in NLP alongside tokenisation.

– Event Annotation – <event> – Structural annotation type representing events, often used in new
media contexts for things such as tweets, chat messages and forum posts (as defined by a user-
defined set definition). Note that a more linguistic kind of event annotation can be accomplished
with Entity Annotation or even Time Segmentation rather than this one.

– Quote Annotation – <quote> – Structural annotation used to explicitly mark quoted speech, i.e.
that what is reported to be said and appears in the text in some form of quotation marks.

– Note Annotation – <note> – Structural annotation used for notes, such as footnotes or warnings
or notice blocks.

– Reference Annotation – <ref> – Structural annotation for referring to other annotation types.
Used e.g. for referring to bibliography entries (citations) and footnotes.

– Table Annotation – <table> – Structural annotation type for creating a simple tabular environ-
ment, i.e. a table with rows, columns and cells and an optional header.

– Part Annotation – <part> – The structure element part is a fairly abstract structure element
that should only be used when a more specific structure element is not available. Most notably,
the part element should never be used for representation of morphemes or phonemes! Part can be
used to divide a larger structure element, such as a division, or a paragraph into arbitrary subparts.

– Utterance Annotation – <utt> – An utterance is a structure element that may consist of words
or sentences, which in turn may contain words. The opposite is also true, a sentence may consist
of multiple utterances. Utterances are often used in the absence of sentences in a speech context,
where neat grammatical sentences can not always be distinguished.

– Entry Annotation – <entry> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Term Annotation – <term> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Definition Annotation – <def> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Example Annotation – <ex> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Examples annotation defines
examples in such collections.

– Hidden Token Annotation – <hiddenw> – This annotation type allows for a hidden token layer in
the document. Hidden tokens are ignored for most intents and purposes but may serve a purpose
when annotations on implicit tokens is required, for example as targets for syntactic movement
annotation.

• Content Annotation – This category groups text content and phonetic content, the former being one
of the most frequent elements in FoLiA and used to associate text (or a phonetic transcription) with a
structural element.

– Text Annotation – <t> – Text annotation associates actual textual content with structural ele-
ments, without it a document would be textless. FoLiA treats it as an annotation like any other.

– Phonetic Annotation/Content – <ph> – This is the phonetic analogy to text content (<t>) and
allows associating a phonetic transcription with any structural element, it is often used in a speech
context. Note that for actual segmentation into phonemes, FoLiA has another related type:
Phonological Annotation

1.1. Annotation Types 5

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Raw Content – <content> – This associates raw text content which can not carry any further
annotation. It is used in the context of Gap Annotation

• Inline Annotation – This category encompasses (linguistic) annotation types describing a single structural
element. Examples are Part-of-Speech Annotation or Lemmatisation, which often describe a single
token.

– Part-of-Speech Annotation – <pos> – Part-of-Speech Annotation, one of the most common types
of linguistic annotation. Assigns a lexical class to words.

– Lemmatisation – <lemma> – Lemma Annotation, one of the most common types of linguistic
annotation. Represents the canonical form of a word.

– Domain/topic Annotation – <domain> – Domain/topic Annotation. A form of inline annotation
used to assign a certain domain or topic to a structure element.

– Sense Annotation – <sense> – Sense Annotation allows to assign a lexical semantic sense to a
word.

– Error Detection Annotation (DEPRECATED) – <errordetection> – This annotation type is
deprecated in favour of Observation Annotation and only exists for backward compatibility.

– Subjectivity Annotation (DEPRECATED) – <subjectivity> – This annotation type is deprecated
in favour of Sentiment Annotation and only exists for backward compatibility.

– Language Annotation – <lang> – Language Annotation simply identifies the language a part of
the text is in. Though this information is often part of the metadata, this form is considered an
actual annotation.

• Span Annotation – This category encompasses (linguistic) annotation types that span one or more
structural elements. Examples are (Named) Entities or Multi-word Expressions, Dependency Relations,
and many others. FoLiA implements these as a stand-off layer that refers back to the structural elements
(often words/tokens). The layer itself is embedded in a structural level of a wider scope (such as a
sentence).

– Syntactic Annotation – <su> – Assign grammatical categories to spans of words. Syntactic units are
nestable and allow representation of complete syntax trees that are usually the result of consistuency
parsing.

– Chunking – <chunk> – Assigns shallow grammatical categories to spans of words. Unlike syntax
annotation, chunks are not nestable. They are often produced by a process called Shallow Parsing,
or alternatively, chunking.

– Entity Annotation – <entity> – Entity annotation is a broad and common category in FoLiA.
It is used for specifying all kinds of multi-word expressions, including but not limited to named
entities. The set definition used determines the vocabulary and therefore the precise nature of the
entity annotation.

– Dependency Annotation – <dependency> – Dependency relations are syntactic relations between
spans of tokens. A dependency relation takes a particular class and consists of a single head
component and a single dependent component.

– Time Segmentation – <timesegment> – FoLiA supports time segmentation to allow for more fine-
grained control of timing information by associating spans of words/tokens with exact timestamps.
It can provide a more linguistic alternative to Event Annotation.

– Coreference Annotation – <coreferencechain> – Relations between words that refer to the
same referent (anaphora) are expressed in FoLiA using Coreference Annotation. The co-reference
relations are expressed by specifying the entire chain in which all links are coreferent.

– Semantic Role Annotation – <semrole> – This span annotation type allows for the expression of
semantic roles, or thematic roles. It is often used together with Predicate Annotation

– Predicate Annotation – <predicate> – Allows annotation of predicates, this annotation type is
usually used together with Semantic Role Annotation. The types of predicates are defined by a
user-defined set definition.

6 Chapter 1. Introduction

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Observation Annotation – <observation> – Observation annotation is used to make an obser-
vation pertaining to one or more word tokens. Observations offer a an external qualification on
part of a text. The qualification is expressed by the class, in turn defined by a set. The precise
semantics of the observation depends on the user-defined set.

– Sentiment Annotation – <sentiment> – Sentiment analysis marks subjective information such as
sentiments or attitudes expressed in text. The sentiments/attitudes are defined by a user-defined
set definition.

– Statement Annotation – <statement> – Statement annotation, sometimes also refered to as
attribution, allows to decompose statements into the source of the statement, the content of the
statement, and the way these relate, provided these are made explicit in the text.

– Modality Annotation – <modality> – Modality annotation is used to describe the relationship
between cue word(s) and the scope it covers. It is primarily used for the annotation of negation,
but also for the annotation of factuality, certainty and truthfulness:.

• Subtoken Annotation – This category contains morphological annotation and phonological annotation,
i.e. the segmentation of a word into morphemes and phonemes, and recursively so if desired. It is
a special category that mixes characteristics from structure annotation (the morpheme and phoneme
elements are very structure-like) and also from span annotation, as morphemes and phonemes are
embedded in an annotation layer and refer back to the text/phonetic content they apply to. Like
words/tokens, these elements may also be referenced from wref elements.

– Morphological Annotation – <morpheme> – Morphological Annotation allows splitting a
word/token into morphemes, morphemes itself may be nested. It is embedded within a layer
morphology which can be embedded within word/tokens.

– Phonological Annotation – <phoneme> – The smallest unit of annotatable speech in FoLiA is
the phoneme level. The phoneme element is a form of structure annotation used for phonemes.
Alike to morphology, it is embedded within a layer phonology which can be embedded within
word/tokens.

• Text Markup Annotation – The text content element (<t>) allows within its scope elements of a this
category; these are Text Markup elements, they always contain textual content and apply a certain
markup to certain spans of the text. One of it’s common uses is for styling (emphasis, underlines, etc.).
Text markup elements may be nested.

– Style Annotation – <t-style> – This is a text markup annotation type for applying styling to
text. The actual styling is defined by the user-defined set definition and can for example included
classes such as italics, bold, underline

– Hyphenation – <t-hbr> – This is a text-markup annotation form that indicates where in the
original text a linebreak was inserted and a word was hyphenised.

– Horizontal Whitespace – <t-hspace> – Markup annotation introducing horizontal whitespace
• Higher-order Annotation – Higher-order Annotation groups a very diverse set of annotation types that

are considered annotations on annotations
– Correction Annotation – <correction> – Corrections are one of the most complex annotation

types in FoLiA. Corrections can be applied not just over text, but over any type of structure
annotation, inline annotation or span annotation. Corrections explicitly preserve the original, and
recursively so if corrections are done over other corrections.

– Gap Annotation – <gap> – Sometimes there are parts of a document you want to skip and not
annotate at all, but include as is. This is where gap annotation comes in, the user-defined set
may indicate the kind of gap. Common omissions in books are for example front-matter and
back-matter, i.e. the cover.

– Relation Annotation – <relation> – FoLiA provides a facility to relate arbitrary parts of your
document with other parts of your document, or even with parts of other FoLiA documents or
external resources, even in other formats. It thus allows linking resources together. Within this
context, the xref element is used to refer to the linked FoLiA elements.

1.1. Annotation Types 7

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Span Relation Annotation – <spanrelation> – Span relations are a stand-off extension of relation
annotation that allows for more complex relations, such as word alignments that include many-
to-one, one-to-many or many-to-many alignments. One of its uses is in the alignment of multiple
translations of (parts) of a text.

– Metric Annotation – <metric> – Metric Annotation is a form of higher-order annotation that
allows annotation of some kind of measurement. The type of measurement is defined by the class,
which in turn is defined by the set as always. The metric element has a value attribute that stores
the actual measurement, the value is often numeric but this needs not be the case.

– String Annotation – <str> – This is a form of higher-order annotation for selecting an arbitrary
substring of a text, even untokenised, and allows further forms of higher-order annotation on the
substring. It is also tied to a form of text markup annotation.

– Alternative Annotation – <alt> – This form of higher-order annotation encapsulates alternative
annotations, i.e. annotations that are posed as an alternative option rather than the authoratitive
chosen annotation

– Comment Annotation – <comment> – This is a form of higher-order annotation that allows you to
associate comments with almost all other annotation elements

– Description Annotation – <desc> – This is a form of higher-order annotation that allows you to
associate descriptions with almost all other annotation elements

– External Annotation – <external> – External annotation makes a reference to an external FoLiA
document whose structure is inserted at the exact place the external element occurs.

1.2 Vocabulary sets

FoLiA specifically defines various types of annotation, but it never defines the vocabulary (aka label/tag sets)
you can use for those annotations. The vocabulary for, for instance, Part-of-Speech annotation can be defined
by anyone in a separate publicly available file known as a Set Definition. Anybody is free to create and host
their own set definitions on the internet. These set definitions are typically formulated according to a linked
open data model (SKOS) and as-such provide a semantic foundation. Each FoLiA document declares in its
metadata section, what set definitions to use (described by a URL pointing to a set definition file) for what
annotation types. The individual labels inside a set are called classes in the FoLiA paradigm. Classes in a
Part-of-Speech tagset, for instance, could be Noun, Verb or Adjective, or a more symbolic version thereof
(human readable labelling is exlusively done inside the set definition, classes typically refer to more symbollic
names, such as N, V or ADJ in this case).
This vocabulary paradigm of independently defined sets and classes is a fundamental part of FoLiA and
stretches accross all annotation types.
See also:

Read the full specification in the following section: Set Definitions (Vocabulary)

1.3 Validation

If you create FoLiA documents in any shape or form, it is of great importance that you validate whether they
indeed conform to the FoLiA specification; otherwise they can not be processed correctly by any FoLiA-aware
software. FoLiA is a strict format by design, we prefer to be explicit and do away with any ambiguity or
any ad-hoc constructions, this ensures that parsing FoLiA is clear for both humans and machines. Specific
validator software is provided to this end.

• A first level of validation is performed by comparing your document against the FoLiA schema (in
RelaxNG), this gives you a good indication whether the document is formed corrected; but is not
sufficient for full validation!

8 Chapter 1. Introduction

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• For full validation, process the document using one of the provided validation tools. These tools make
a distinction between shallow validation and deep validation, the distinction being that only in the
latter case the validity of all used classes will be put to the test using the set definitions. Shallow
validations allows users to still use FoLiA without formally defining their annotation vocabularies.

Validators are provided by the FoLiA tools (Python) or by the FoliAutils (C++), a command-line example of
installation and invocation of the former:

$ pip install folia-tools
$ foliavalidator myfoliadocument.folia.xml

1.4 Metadata

Every FoLiA document starts with a metadata block, this contains at least a set of declarations of used
annotation types, which is always mandatory. Optionally it then contains a provenance section and after
that there is space for custom metadata, either document-wide metadata or submetadata applying to particular
parts of the document.

1.4.1 Annotation Declarations

All annotation types that are used in a FoLiA document have to be declared. In the metadata block you will
find the <annotations> block in which each annotation type that occurs in the document is mentioned, i.e.
declared. So does your document include Part of Speech tagging? Then there will be an entry declaring it
does so, and linking to the set definition used.
This allows software to identify exactly what a FoLiA document consists of without needing to go through
the entire document, on the basis of this software can determine whether it can handle the document in
the first place. You can for instance imagine an NLP tool that does Named Entity Recognition but requires
Part-of-Speech tags and Lemmas to do so, feeding it a FoLiA document without such annotation layers would
then be pointless and easy to detect.
See also:

Read the full specification in the following section: Annotation Declarations

1.4.2 Provenance Data

Throughout its lifecycle, a FoLiA document may be enriched by multiple FoLiA-aware NLP tools. The
provenance block in the metadata header of the document allows us to register precisely what tools were
invoked, and optionally when they were invoked and by whom. It is tied to the Declarations section.
See also:

Read the full specification in the following section: provenance_data

1.4.3 Document Metadata

FoLiA has support for metadata. Here we define metadata as distinct from (linguistic) annotation in the
sense that it is information that describes either the document as a whole or a significant sub-part thereof, as
opposed to a particular annotation on the text/speech, which is already covered by FoLiA’s main paradigm.
Metadata contains information such as authorship of the document, affiliations, sources, licenses, publication
date, or whatever else you can think of. Note that it’s up to the resource creator, FoLiA does not define any
metadata vocabulary!
FoLiA offers a simple native metadata system, which is essentially just a simple key-value store. Alternatively,
you can embed foreign metadata schemes such as Dublin Core, CMDI, or whatever you please. You can also
refer to metadata in external files, keeping it all separate from the FoLiA document.

1.4. Metadata 9

https://github.com/proycon/foliatools

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

In addition to document-wide metadata, i.e. metadata that is applicable to the document as a whole, we
already mentioned that FoLiA supports metadata on arbitrary parts of the document. This is referred to as
submetadata.
See also:

Read the full specification in the following section: Metadata

1.5 Document structure

FoLiA is a document-based format, representing each document and all relevant annotations in a single XML
file. [#fex]
We have not included any XML examples in this introduction thus-far, but from now on we will make heavy
use of it. From this point forward, we therefore assume the reader has at least a basic familiarity with XML,
its use of elements, attributes, comments and a simple understanding of the notion of an XML namespace
and an XML schema. If not, we recommend the following XML Tutorial.
In our first XML snippet, we show the basic structure of such a FoLiA document is as follows and should
always be UTF-8 encoded.

<?xml version="1.0" encoding="utf-8"?>
<FoLiA xmlns="http://ilk.uvt.nl/FoLiA"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
version="2.0"
xml:id="example">
<metadata>

<annotations>
...

</annotations>
<provenance>

..
</provenance>
...

</metadata>
<text xml:id="example.text">

...
</text>

</FoLiA>

The root element of a FoLiA document is always the FoLiA element. This, and all other FoLiA elements
should always be in the FoLiA XML Namespace, http://ilk.uvt.nl/FoLiA2 .
The mandatory version attribute describes the FoLiA version that the document complies to (this is not the
version of the document! There is room in the provenance_data for that). The document as a whole always
carries an ID (xml:id), like all identifiers in FoLiA, this has to be a unique string. More about identifiers can
be read in the next section.
The structure of a FoLiA document can roughly be divided into two parts, the metadata section and a body,
the body is formed by either the <text> element or the <speech> element (see Speech for more information
about using FoLiA for speech). The body elements (<text>/<speech>) are structural elements but take no
sets, classes, nor a declaration.
The metadata section features a mandatory annotations section containing the Annotation Declarations,
next is the optional but recommended provenance block that contains the provenance_data. After this there
is space for other Metadata.

2 For historical reasons, the XML namespace URI refers to a research group at the University of Tilburg where FoLiA was
first founded, but which no longer exists.

10 Chapter 1. Introduction

https://www.w3schools.com/xml/default.asp

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Note: Do not confuse the <text> body element with the <t> element and <text-annotation> declaration,
which are both for Text Annotation.

1.6 Annotation Instances

All forms of annotation in FoLiA are encoded using an distinct XML element. The first few layers of nested
XML elements are usually structural elements (see Structure Annotation) such as divisions, paragraphs and
sentences. Then the deepest structure layer is usually tokenisation (<w>, Token Annotation). Within these
structures, you find inline annotation elements (see Inline Annotation) encoding linguistic information, you
also find layers with span annotation (see Span Annotation), which refer back to the tokens/words in a
stand-off fashion.
Whatever the annotation type, all annotation elements for it are bound by the same paradigm, making FoLiA
predictable and consistent to a large degree. Central to this paradigm are the notion of sets, declarations, set
definitions and classes, as introduced in earlier sections, and the notion of common attributes, as explained
in the next section.
The FoLiA paradigm can be schematically visualised as follows, don’t worry if not all the details are immediately
clear. This documentation will provide examples for all annotation types to guide you along.

1.6.1 Common attributes

Annotation elements in FoLiA carry so-called common attributes, these are common properties, represented as
XML attributes, that can be set on different annotations. The exact subset of mandatory or optional common
attributes differs slightly per annotation type. In this documentation we will explicitly list the required and
optional common attributes per annotation type. Altogether, we distinguish the following:
Core Attributes:

1.6. Annotation Instances 11

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• xml:id – The ID of the element; this has to be a unique in the entire document or collection of
documents (corpus). All identifiers in FoLiA are of the XML NCName datatype, which roughly means
it is a unique string that has to start with a letter (not a number or symbol), may contain numbers,
but may never contain colons or spaces. FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions (Vocabulary)) or
otherwise a uniquely identifying string. The set must be referred to also in the Annotation Declarations
for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined by set.
• id – A reference to the ID of another element. This is a reference and not an assignment, unlike xml:id,

so do not confuse the two! It is only supported on certain elements that are referential in nature.
Provenance attributes:

• processor – This refers to the ID of a processor in the provenance_data. The processor in turn defines
exactly who or what was the annotator of the annotation.

Authorship attributes, these provides a simpler mechanism stemming from earlier versions of FoLiA and can
be used without full provenance (instead of processor):

• annotator – This is an older alternative to the processor attribute, without support for full prove-
nance. The annotator attribute simply refers to the name o ID of the system or human annotator that
made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without support for full
provenance. It is used together with annotator and specific the type of the annotator, either manual
for human annotators or auto for automated systems.

Annotation attributes:

• confidence – A floating point value between zero and one; expresses the confidence the annotator
places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is YYYY-MM-DDThh:mm:ss
(note the literal T in the middle to separate date from time), as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for example chapter
numbers, section numbers, list item numbers. This this not have to be an actual number but other
sequence identifiers are also possible (think alphanumeric characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced attribute, if not
specified, it defaults to current. See Text class attribute (advanced).

• space – This attribute indicates whether spacing should be inserted after this element (it’s default
value is always yes, so it does not need to be specified in that case), but if tokens or other structural
elements are glued together then the value should be set to no. This allows for reconstruction of the
detokenised original text.

Speech attributes, the following attributes apply mostly in a speech context (please read speech for more):
• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the speech. If a

sound clip is specified (src); the timestamp refers to a location in the soundclip.
• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech. If a sound

clip is specified (src); the timestamp refers to a location in the soundclip.
• speaker – A string identifying the speaker. This attribute is inheritable. Multiple speakers are not

allowed, simply do not specify a speaker on a certain level if you are unable to link the speech to a
specific (single) speaker.

XLink attributes, the following apply mainly on text and text markup elements and allow creating hyperlinks.
See the section Hyperlinks for details.

• xlink:href – Creates a hyperlink on a text to the specified URL

12 Chapter 1. Introduction

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• xlink:type – Specifies the type of the hyperlink. (should be set to simple in almost all cases)
Processing tags; These tags can be used by FoLiA tools to help their processing. We’re essentially encoding
some extra cue in the FoLiA to help another tool do its job, and such a cue may be needed because the
information is not present in the FoLiA yet, or is too complexly encoded for the other tool to unravel.

• tag – Contains a space separated list of processing tags associated with the element. A processing tag
carries arbitrary user-defined information that may aid in processing a document. It may carry cues
on how a specific tool should treat a specific element. The tag vocabulary is specific to the tool that
processes the document. Tags carry no instrinsic meaning for the data representation and should not
be used except to inform/aid processors in their task. Processors are encouraged to clean up the tags
they use. Ideally, published FoLiA documents at the end of a processing pipeline carry no further tags.
For encoding actual data, use class and optionally features instead.

1.6.2 Identifiers

Many elements in FoLiA take an identifier by which the element is uniquely identifiable. This makes referring
to any part of a FoLiA document easy. Identifiers should be unique in the entire document, and ideally
within the entire corpus collection if you have multiple documents, though that is a recommendation and not
enforced. The ID can be anything that qualifies as a valid ID according to the XML standard, that is, it is
a non-colonized name (NCName) that starts with either a letter or an underscore and contains none other
than letters, digits, underscores, hyphens and periods. A well proven convention for IDs is of a cumulative
nature, in which you append the element name, a period, and a sequence number, to the identifier of a parent
element higher in the hierarchy. Identifiers are always encoded in the xml:id attribute.
The FoLiA document as a whole also carries an identifier.
Identifiers are very important and used throughout the FoLiA format, and mandatory for almost all structural
elements. They enable external resources and databases to easily point to a specific part of the document or
an annotation therein. FoLiA has been set up in such a way that identifiers should never change. Once an
identifier is assigned, it should never change, re-numbering is strictly prohibited unless you intentionally want
to create a new resource and break compatibility with the old one.
Certain FoLiA elements take an id attribute in the FoLiA XML namespace instead of the XML namespace,
these are always references to the ID of another element. It’s important not to confuse the two.

1.7 Speech

FoLiA is also suited for annotation of speech data. The following additional generic FoLiA attributes are
available for all structure annotation elements in a speech context:

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the speech. If a

sound clip is specified (src); the timestamp refers to a location in the soundclip.
• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech. If a sound

clip is specified (src); the timestamp refers to a location in the soundclip.
• speaker – A string identifying the speaker. This attribute is inheritable. Multiple speakers are not

allowed, simply do not specify a speaker on a certain level if you are unable to link the speech to a
specific (single) speaker.

Speech generally asks for a different document structure than text documents. The top-level element for
speech-centred resources is speech, rather than text. Most elements described in the section on text
structure may be used under speech as well; such as Division Annotation, Sentence Annotation, Token
Annotation. Notions such as paragraphs, tables and figures make less sense in a speech context.
In a speech context, you can use Utterance Annotation as an alternative or complement to Sentence Anno-
tation, as it is often more logical to segment speech into utterances than grammatically sound sentences.

1.7. Speech 13

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

For non-speech events, you can use Event Annotation. Consider the following small example, with speech-
context attributes associated:

<event class="cough" src="soundclip.mp3" begintime="..." endtime="..." />

If you want to associate timing information and the use of begintime and endtime on structural elements
is insufficient for your needs, then look into Time Segmentation.
Speech has its counterpart to text, in the form of a phonetic or phonological transcription, i.e. a representation
of the speech as it was pronounced/recorded. FoLiA has a separate content element for this, see Phonetic
Annotation/Content. You should still use the normal Text Annotation for a normal textual transcription of
the speech.
For further segmentation of speech into phonemes, you can use Phonological Annotation.

1.7.1 Example

An example of a simple speech document:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <phon-annotation>
6 <annotator processor="p1" />
7 </phon-annotation>
8 <utterance-annotation>
9 <annotator processor="p1" />

10 </utterance-annotation>
11 <token-annotation>
12 <annotator processor="p1" />
13 </token-annotation>
14 </annotations>
15 <provenance>
16 <processor xml:id="p1" name="proycon" type="manual" />
17 </provenance>
18 </metadata>
19 <speech xml:id="example.speech">
20 <utt xml:id="example.utt.1" src="helloworld.mp3" begintime="00:00:01.000"␣

↪→endtime="00:00:02.000">
21 <ph>hel�o� w��ld</ph>
22 <w xml:id="example.utt.1.w.1" begintime="00:00:00.000" endtime="00:00:01.000">
23 <ph>hel�o�</ph>
24 </w>
25 <w xml:id="example.utt.1.w.2" begintime="00:00:01.000" endtime="00:00:02.000">
26 <ph>w��ld</ph>
27 </w>
28 </utt>
29 </speech>
30 </FoLiA>

1.8 Hyperlinks

Hyperlinks are ubiquitous in documents from the web and are therefore supported in FoLiA as well. A hyperlink
can be defined as a pointer from a span of text to an external resource. In FoLiA, this method is therefore
implemented as a simple property on Text Annotation itself. Text content elements (<t>) as well as any

14 Chapter 1. Introduction

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Text Markup elements that may be contained therein (<t-*>), may act as a hyperlink. The link itself is
implemented through XLink semantics:

<s>
<w><t>The</t></w>
<w><t>FoLiA</t></w>
<w><t>website</t></w>
<w><t>is</t></w>
<w><t xlink:type="simple" xlink:href="https://proycon.github.io/folia">here</t></w>
<w><t>.</t></w>
</s>

Or on a substring (see String Annotation) in untokenised text:

<s>
<t>The FoLiA website is <t-str xlink:type="simple"
xlink:href="https://proycon.github.io/folia">here</t-str>.</t>
</s>

Before using this, make sure to investigate Reference Annotation as well. There we describe a more semantic
way of hyperlinking, which uses references (<ref> elements) that are actual structure elements. The hyper-
linking method described in this section is of a more text-mark-up or stylistic nature. Actual references are
usually preferred when applicable.
Another notion of linking is implemented using FoLiA’s relations (Relation Annotation). Relations are actual
higher-order annotations that can link anything but it needs not be reflected in the actual text, whereas the
hyperlinks described here and the references of Reference Annotation do always show in the text.

1.8. Hyperlinks 15

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

16 Chapter 1. Introduction

CHAPTER 2

Metadata

FoLiA supports associating metadata with your document, you will find this in the <metadata> document at
the very beginning of the document. An extensive and mandatory part of this metadata is the Annotation Dec-
larations block (<annotations>), and second (optionally) the block for provenance_data (<provenance>).
The remainder of the <metadata> block may be filled with Document Metadata as described in Document
Metadata later. on.

2.1 Annotation Declarations

All annotation types that are used in a FoLiA document have to be declared. In the metadata block you will
find the <annotations> block in which each annotation type that occurs in the document is mentioned, i.e.
declared. So does your document include Part of Speech tagging? Then there will be an entry declaring it
does so, and linking to the set definition used.
These declarations allow software to identify exactly what a FoLiA document consists of without needing
to go through the entire document, on the basis of this software can determine whether it can handle the
document in the first place. You can for instance imagine an NLP tool that does Named Entity Recognition
but requires Part-of-Speech tags and Lemmas to do so, feeding it a FoLiA document without such annotation
layers would then be pointless and easy to detect.
Each annotation type has a specific XML element to use as declaration in the <annotations> block, these
all end in with the suffix -annotations and take the following attributes:

• set - The set should be a URL to a publicly hosted set definition that defines the vocabulary used (see
Set Definitions (Vocabulary)) with this particular annotation type. Sets are intentionally kept separate
from FoLiA itself and can be created by anyone. FoLiA also allows for ad-hoc sets, these are sets that
are not actually defined and they are therefore an arbitrary string rather than a URL. They allow for
a more flexible use of FoLiA without full formal closure, but limit it to only shallow validation. Some
annotation types also work without an associated vocabulary, and for some they are optional, on such
declarations the set attribute is not used or optional.

• format - Set definitions can be stored in several formats, the format may be indicated (not mandatory)
by the format attribute on each declaration, its value should be a MIME type.

• alias - This is an optional attribute that specifies an alias for the set, this is useful in case an annotation
type occurs multiple times with distinct sets, in which case individual annotation needs to explicitly
mention the set but referring to sets by long URLs gets cumbersome. In such cases annotations can
use the alias instead of the full set URL. An alias has to be unique for the annotation type.

17

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Within the scope of each annotation’s declaration, you can declare one or more annotators, each annotator
refers (by ID) to what we call a processor in the provenance data. These processors represent software
tools or human annotators and carry various attributes, e.g. the name of the annotator/tool. So this part of
declaration identifies who or what performed the annotation. Consider the following example:

<annotations>
<token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
<annotator processor="p1.ucto"/>

</token>
<pos-annotation set="https://github.com/proycon/folia/blob/master/setdefinitions/

↪→cgn.foliaset.ttl">
<annotator processor="p2.frog"/>
<annotator processor="p3.proycon"/>

</pos>
</annotations>

The section provenance_data will explain in depth how the processors that the annotator elements refer to
are defined. If there is only one annotator declared, then this is the default for all annotations of this type
and set, in which case individual annotation instances need not refer to any processor. If there are multiple
annotators, the individual annotation instances should refer to a processor to disambiguate.
Provenance data is recommended but not required in FoLiA. A simpler mechanism from prior to FoLiA v2.0 is
also still available: If you do not refer to processors for a certain annotation type and set (i.e. no <annotator>
elements), then you can specify the following optional attributes on your declaration to set a default annotator.
They act as a default value that can be overriden on individual annotations:

• annotator - The name of the default annotator (either human or software)
• annotatortype - Set to auto if the default annotator is automatic annotation by software or manual

for human annotators
• datetime – The date and time when all annotations of this type were recorded, the format is

YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time), as per the
XSD Datetime data type.

2.2 Set definitions

A set definition (see Set Definitions (Vocabulary)) specifies exactly what classes are allowed in a particular
vocabulary. It for example specifies exactly what part-of-speech tags exist. This information is necessary to
validate the document completely at its deepest level. If the sets point to URLs that do not exist or are not
URLs at all, warnings will be issued. Validation can still proceed but with the notable exception that there is
no deep validation of these sets, so no full formal closure.
Though we recommend using and creating actual sets. FoLiA itself is rather agnostic about their existence for
most purposes. For deep validation, proper formalisation, and for certain applications they may be required;
but as long as they serve as proper unique identifiers you can get get away with non-existing sets. In this
case, simply do not use a URL but another arbitrary identification string.
If multiple sets are used for the same annotation type, which is perfectly valid, they each need a separate
declaration.
See also:

• Set Definitions (Vocabulary)
• provenance_data

18 Chapter 2. Metadata

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

2.3 Document Metadata

To associate other arbitrary metadata with a FoLiA document, there is FoLiA’s native metadata system, in
which simple metadata fields can be defined and used at will through the <meta> element. The following
example shows document-wide metadata:

<metadata type="native">
<annotations>
..
</annotations>
<meta id="title">Title of my document</meta>
<meta id="language">eng</meta>

</metadata>

The native metadata format just offers a simple key-value store. You can define fields with custom IDs.
FoLiA itself does not predefine any, strictly speaking, although certain fields like language, title and author
are conventional and can be interpreted by some FoLiA-capable tools and libraries.
The native metadata format is deliberately limited, as various other formats already tackle the metadata issue.
FoLiA is able to operate with any other metadata format, such as for example Dublin Core or for example
CMDI. The type attribute specifies what metadata format is used. We see it was set to native for FoLiA’s
native metadata format, for foreign formats it can be set to any other string.
Foreign metadata can be stored in two ways:

• Externally in a different file
• Internally in the metadata block of the FoLiA document itself

When the metadata is stored externally in a different file, a reference is made from the src attribute. As
shown in the following example:

<metadata type="cmdi" src="/path/or/url/to/metadata.cmdi">
<annotations>
..
</annotations>

</metadata>

If you want to store the metadata in the FoLiA document itself, then the metadata must be places inside a
<foreign-data> element. All elements under foreign-data must be in another XML namespace, that is, not
the default FoLiA namespace. Consider the following example for Dublin Core:

<metadata type="dc">
<annotations>
..
</annotations>
<foreign-data xmlns:dc="http://purl.org/dc/elements/1.1/">
<dc:identifier>mydoc</dc:identifier>
<dc:format>text/xml</dc:format>
<dc:type>Example</dc:type>
<dc:contributor>proycon</dc:contributor>
<dc:creator>proycon</dc:creator>
<dc:language>en</dc:language>
<dc:publisher>Radboud University</dc:publisher>
<dc:rights>public Domain</dc:rights>

</foreign-data>
</metadata>

The namespace prefix and the type specified in the <metadata> element should match.

2.3. Document Metadata 19

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

2.4 Submetadata

Whereas the metadata discussed in the previous section concerns document-wide metadata, i.e. metadata that
is applicable to the document as a whole, FoLiA also supports metadata on arbitrary parts of the document.
This we call submetadata. Within the <metadata> block, one can include one or more <submetadata>
blocks. Like <metadata>, a <submetadata> block carries a type attribute, a src attribute in case the
metadata is an external reference, and it may hold <meta> elements or <foreign-data> elements. It differs
from <metadata> in that it carries a mandatory xml:id attribute and never has an <annotations> or
<provenance> block. The ID is in turn used to back to the metadata from particular elements in the text.
Such a reference is made using the metadata attribute, which is a common FoLiA attribute allowed on many
elements. Consider the following example (certain details are omitted for brevity):

<FoLiA>
<metadata>
<annotations>...</annotations>
<submetadata xml:id="metadata.1" type="native">
<meta id="author">proycon</meta>
<meta id="language">nld</meta>

</submetadata>
<submetadata xml:id="metadata.2" type="native">
<meta id="author">Shakespeare</meta>
<meta id="language">eng</meta>

</submetadata>
</metadata>
<text>
<p metadata="metadata.1">
<t>Het volgende vers komt uit Hamlet:</t>

</p>
<p metadata="metadata.2">
<s><t>To be, or not to be, that is the question:</t></s>
<s><t>Whether 'tis nobler in the mind to suffer
The slings and arrows of␣

↪→outrageous fortune,
Or to take Arms against a Sea of troubles,
 And by␣
↪→opposing end them:</s></t>
</p>
</text>
</FoLiA>

Since metadata can be associated with anything, any arbitrary sub-part of untokenised text can even be
selected and associated with the existing facilities <str> or t-str (see String Annotation). Some redundancy
occurs only at places where structural boundaries are crossed (the metadata attribute might have to be
repeated on multiple structural elements if there is no catch-all structure).
Submetadata is inherited (recursively), i.e. it is not necessary to explicitly assign the metadata attribute to
the children of an element that already has such an assignment.

2.5 Provenance Data

It is often desireable to know exactly what tools (and what versions thereof and even with what parameters)
were invoked in which order to produce a FoLiA document, this is called provenance data. In the metadata
section, right after the Annotation Declarations FoLiA allows for a <provenance> block containing this
information. It is not mandatory but it is strongly recommended.
The <provenance> block defines one or more processors, processors are processes or entities that have
processed and often performend some kind of manipulation of the document, such as adding annotations.
The processors are listed in the order they were invoked. The Annotation Declarations in turn link to these
processors to tie a particular annotation type and set to one or more processors.

20 Chapter 2. Metadata

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

A <processor> carries the following attributes:

• xml:id (mandatory) – The ID of the processor, this is how it is referred to from the <annotator
processor=".." /> element in the Annotation Declarations and from the processor attribute
(part of the common FoLiA attributes) on individual annotations.

• name (mandatory) – The name identifies actual tool or human annotator
• type – Each processor contains a type:

– auto - (default) - The processor is an automated tool that provided annotations
– manual - The processor refers a manual annotator
– generator - The processor indicates the FoLiA library used by the parent and sibling

processors (unless sibling processes specify another generator in their scope)
– datasource - The processor is a reference to a particular data source that was used by

the parent processor. If there is no parent processor but it is instead directly part of the
provenance chain, often as the very first element, then you can interpret this to be the
original data source from which the document sprung.

• version – (optional but strongly recommended) is the version of the processor aka tool
• document_version (optional) – The version of the document, refers to any label the user desires

to indicate a version of the document, so the format is not predetermined and needs not be
numeric.

• command (optional) – The exact command that was run
• host (optional) – The host on which the processor ran, this identifies individual systems on a

network/cluster.
• user (optional) – The user/executor which ran the processor, this identifies who ran an automated

process rather than who the annotator was!
• src (optional) – The source of the processor, a URL to the tool itself in case the software is an

online tool, or to its website or source code repository if not. If the processor is of the datasource
type, then this attribute should point to that data set or a website describing it. The format
attribute can be used to further specify the type of source.

• format (optional) – MIME type describing the kind of resource pointed to by src. Use text/html
for websites. Especially useful for processors of type datasource.

• folia_version (optional) - The folia version that was written
• begindatetime (optional) – Specifies when the process started, format is YYYY-MM-DDThh:mm:ss

(note the literal T in the middle to separate date from time), as per the XSD Datetime data type.
• enddatetime (optional) – Specifies when the process finished, format is YYYY-MM-DDThh:mm:ss

(note the literal T in the middle to separate date from time), as per the XSD Datetime data type.
• resourcelink (optional) - The URI of any RDF resource describing this processor. This allows

linking to the external world of linked open data from the provenance chain in FoLiA.
• Additional custom metadata is allowed in the form of <meta> elements (just like with folia native

metadata) inside the scope of a processor, FoLiA does not define the semantics of any such
metadata, i.e. they are tool/application-specific and could for instance be used to specify tool
parameters used.

First consider a fairly minimalistic example, note that we include the Annotation Declarations as well with a
link to the processor:

<annotations>
<token-annotation set="tokconfig-nl">

<annotator processor="p0" />
</token-annotation>

(continues on next page)

2.5. Provenance Data 21

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</annotations>
<provenance>

<processor xml:id="p0" name="ucto" version="0.15" folia_version="2.0" command=
↪→"ucto -Lnld" host="mhysa" user="proycon" begindatetime="2018-09-12T00:00:00"␣
↪→enddatetime="2018-09-12T00:00:10" document_version="1" />
</provenance>

Individual annotations in the document can refer to this processor using the processor attribute:

<w class="PUNCTUATION" processor="p0">
<t>.</t>
</w>

If there is only one <annotator> defined for a certain annotation type and set in the Annotation Declarations,
then it is the default and no processor attribute is necessary.
One of the powerful features of processors is that they can be nested, this creates subprocessors and captures
situations where one processor invokes others as part of its operation. Subprocessors can also provide some
extra information on their parent processor, as they can for example state what FoLiA library was used
(type="generator") or what data sources were used by the processor (type="datasource"). Moreover,
arbitrary metadata can be added to any processor in the form of <meta> elements (just like with FoLiA’s
native Metadata), FoLiA does not define the semantics of any such metadata, i.e. they are tool/application-
specific and could for instance be used to specify tool parameters used. Note that whereas the order of the
processors in the <provenance> block is strictly significant, the order of subprocessors is not.
With all this in mind, we can expand our previous example:

<provenance>
<processor xml:id="p0" name="ucto" version="0.15" folia_version="2.0" command=

↪→"ucto -Lnld" host="mhysa" user="proycon" begindatetime="2018-09-12T00:00:00"␣
↪→enddatetime="2018-09-12T00:00:10" document_version="1" />

<meta id="config">tokconfig-nld</meta>
<meta id="language">nld</meta>
<processor xml:id="p0.1" name="libfolia" version="2.0" folia_version="2.0"␣

↪→type="generator" />
<processor xml:id="p0.1" name="tokconfig-nld" version="2.0" folia_version="2.0

↪→" type="datasource" />
</processor>

</provenance>

Or consider the following example in which we have a tool that is an annotation environment in which human
annotators edit a FoLiA document and add/edit annotations:

<provenance>
<processor xml:id="p2" name="flat" version="0.8" folia_version="2.0" host="flat.

↪→science.ru.nl" begindatetime="2018-09-12T00:10:00" enddatetime="2018-09-12T00:20:00
↪→" document_version="3">

<processor xml:id="p2.0" name="foliapy" version="2.0" folia_version="2.0"␣
↪→type="generator" />

<processor xml:id="p2.1" name="proycon" type="manual" />
<processor xml:id="p2.2" name="ko" type="manual" />

</processor>
</provenance>

From the Annotation Declarations, we can then also refer directly to subprocessors. Moreover, a processor
can be referred to from multiple annotation types/sets:

22 Chapter 2. Metadata

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

<annotations>
...
<pos-annotation set="...">

<annotator processor="p2.1" />
<annotator processor="p2.2" />

</pos-annotation>
<lemma-annotation set="...">

<annotator processor="p2.1" />
</lemma-annotation>
...

</annotations>

Of course, providing all this is not mandatory and requires the specific tool to actually supply this provenance
data. It is still possible to have FoLiA documents without provenance data at all.
The following example provides a small but complete FoLiA document with provenance data:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?xml-stylesheet type="text/xsl" href="folia.xsl"?>
3 <FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia"␣

↪→xml:id="untitled" generator="manual" version="2.0.0">
4 <metadata type="native">
5 <annotations>
6 <text-annotation set="https://raw.githubusercontent.com/proycon/folia/master/

↪→setdefinitions/text.foliaset.ttl"/>
7 <paragraph-annotation />
8 <sentence-annotation />
9 <token-annotation set="tokconfig-nl">

10 <annotator processor="p0" />
11 </token-annotation>
12 <pos-annotation set="http://ilk.uvt.nl/folia/sets/frog-mbpos-cgn">
13 <!-- There are multiple annotators, this means that each pos annotation␣

↪→should explicitly refer to one of them using the @processor attribute -->
14 <annotator processor="p1.1" />
15 <annotator processor="p2.1" />
16 <annotator processor="p2.2" />
17 </pos-annotation>
18 <lemma-annotation set="http://ilk.uvt.nl/folia/sets/frog-mblem-nl">
19 <!-- There is only one annotator so this will be the default, no need to␣

↪→explicitly refer to it from lemma annotations using the @processor attribute -->
20 <annotator processor="p1.2" />
21 </lemma-annotation>
22 </annotations>
23 <provenance>
24 <processor xml:id="p0" name="ucto" version="0.15" folia_version="2.0" command=

↪→"ucto -Lnld" host="mhysa" user="proycon" src="https://github.com/LanguageMachines/
↪→ucto" begindatetime="2018-09-12T00:00:00" enddatetime="2018-09-12T00:00:00"␣
↪→document_version="1">

25 <!-- We can add arbitrary meta fields to any processor, they are not␣
↪→defined by FoLiA but application-specific -->

26 <meta id="config">tokconfig-nld</meta>
27 <meta id="language">nld</meta>
28 <processor xml:id="p0.1" name="libfolia" version="2.0" folia_version="2.0

↪→" type="generator" />
29 </processor>
30 <processor xml:id="p1" name="frog" version="0.16" folia_version="2.0" command=

↪→"frog --skip=pn" host="mhysa" user="proycon" src="https://github.com/
↪→LanguageMachines/frog" begindatetime="2018-09-12T00:01:00" enddatetime="2018-09-
↪→12T00:02:00" document_version="2"> (continues on next page)

2.5. Provenance Data 23

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

31 <processor xml:id="p1.0" name="libfolia" version="2.0" folia_version="2.0
↪→" type="generator" />

32 <processor xml:id="p1.1" name="mbpos" version="0.16">
33 <processor xml:id="p1.1.1" type="datasource" name="CGN Corpus"␣

↪→version="unknown" />
34 <processor xml:id="p1.1.2" type="datasource" name="WOTAN Corpus"␣

↪→version="unknown" />
35 <processor xml:id="p1.1.3" type="datasource" name="DCOI Corpus"␣

↪→version="unknown" />
36 <processor xml:id="p1.1.4" type="datasource" name="Lassy Klein␣

↪→Corpus" version="unknown" />
37 </processor>
38 <processor xml:id="p1.2" name="mblem" />
39 </processor>
40 <processor xml:id="p2" name="flat" version="0.8" folia_version="2.0" host=

↪→"flat.science.ru.nl" src="https://flat.science.ru.nl" begindatetime="2018-09-
↪→12T00:10:00" enddatetime="2018-09-12T00:20:00" document_version="3">

41 <processor xml:id="p2.0" name="foliapy" version="2.0" folia_version="2.0"␣
↪→type="generator" src="https://github.com/proycon/foliapy" />

42 <processor xml:id="p2.1" name="proycon" type="manual" />
43 <processor xml:id="p2.2" name="ko" type="manual" />
44 </processor>
45 </provenance>
46 </metadata>
47 <text xml:id="untitled.text">
48 <p xml:id="untitled.p.1">
49 <s xml:id="untitled.p.1.s.1">
50 <t>De belastingdienst doet aangifte tegen frauderende mensen.</t>
51 <w xml:id="untitled.p.1.s.1.w.1" class="WORD">
52 <t>De</t>
53 <pos class="LID(bep,stan,rest)" confidence="0.999701" head="LID" set="http:/

↪→/ilk.uvt.nl/folia/sets/frog-mbpos-cgn" processor="p1.1">
54 <feat class="bep" subset="lwtype"/>
55 <feat class="stan" subset="naamval"/>
56 <feat class="rest" subset="npagr"/>
57 </pos>
58 <lemma class="de"/>
59 </w>
60 <w xml:id="untitled.p.1.s.1.w.2" class="WORD">
61 <t>belastingdienst</t>
62 <pos class="N(soort,ev,basis,zijd,stan)" confidence="0.998836" head="N" set=

↪→"http://ilk.uvt.nl/folia/sets/frog-mbpos-cgn" processor="p2.1">
63 <feat class="soort" subset="ntype"/>
64 <feat class="ev" subset="getal"/>
65 <feat class="basis" subset="graad"/>
66 <feat class="zijd" subset="genus"/>
67 <feat class="stan" subset="naamval"/>
68 </pos>
69 <lemma class="belastingdienst"/>
70 </w>
71 <w xml:id="untitled.p.1.s.1.w.3" class="WORD">
72 <t>doet</t>
73 <pos class="WW(pv,tgw,met-t)" confidence="0.999262" head="WW" set="http://

↪→ilk.uvt.nl/folia/sets/frog-mbpos-cgn" processor="p1.1">
74 <feat class="pv" subset="wvorm"/>
75 <feat class="tgw" subset="pvtijd"/>

(continues on next page)

24 Chapter 2. Metadata

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

76 <feat class="met-t" subset="pvagr"/>
77 </pos>
78 <lemma class="doen"/>
79 </w>
80 <w xml:id="untitled.p.1.s.1.w.4" class="WORD">
81 <t>aangifte</t>
82 <pos class="N(soort,ev,basis,zijd,stan)" confidence="0.998701" head="N" set=

↪→"http://ilk.uvt.nl/folia/sets/frog-mbpos-cgn" processor="p2.2">
83 <feat class="soort" subset="ntype"/>
84 <feat class="ev" subset="getal"/>
85 <feat class="basis" subset="graad"/>
86 <feat class="zijd" subset="genus"/>
87 <feat class="stan" subset="naamval"/>
88 </pos>
89 <lemma class="aangifte"/>
90 </w>
91 <w xml:id="untitled.p.1.s.1.w.5" class="WORD">
92 <t>tegen</t>
93 <pos class="VZ(init)" confidence="0.854093" head="VZ" set="http://ilk.uvt.

↪→nl/folia/sets/frog-mbpos-cgn" processor="p1.1">
94 <feat class="init" subset="vztype"/>
95 </pos>
96 <lemma class="tegen"/>
97 </w>
98 <w xml:id="untitled.p.1.s.1.w.6" class="WORD">
99 <t>frauderende</t>

100 <pos class="WW(od,prenom,met-e)" confidence="0.96" head="WW" set="http://
↪→ilk.uvt.nl/folia/sets/frog-mbpos-cgn" processor="p1.1">

101 <feat class="od" subset="wvorm"/>
102 <feat class="prenom" subset="positie"/>
103 <feat class="met-e" subset="buiging"/>
104 </pos>
105 <lemma class="frauderen"/>
106 </w>
107 <w xml:id="untitled.p.1.s.1.w.7" class="WORD" space="no">
108 <t>mensen</t>
109 <pos class="N(soort,mv,basis)" confidence="0.999865" head="N" set="http://

↪→ilk.uvt.nl/folia/sets/frog-mbpos-cgn" processor="p1.1">
110 <feat class="soort" subset="ntype"/>
111 <feat class="mv" subset="getal"/>
112 <feat class="basis" subset="graad"/>
113 </pos>
114 <lemma class="mens"/>
115 </w>
116 <w xml:id="untitled.p.1.s.1.w.8" class="PUNCTUATION">
117 <t>.</t>
118 <pos class="LET()" confidence="1" head="LET" set="http://ilk.uvt.nl/folia/

↪→sets/frog-mbpos-cgn" processor="p1.1"/>
119 <lemma class="."/>
120 </w>
121 </s>
122 </p>
123 </text>
124 </FoLiA>

And another more real-life example:

2.5. Provenance Data 25

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?xml-stylesheet type="text/xsl" href="folia.xsl"?>
3 <FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia"␣

↪→xml:id="example.deep" generator="libfolia-v1.5" version="2.0.0">
4 <metadata type="native">
5 <annotations>
6 <text-annotation>
7 <annotator processor="p1" />
8 </text-annotation>
9 <sentence-annotation>

10 <annotator processor="p1" />
11 </sentence-annotation>
12 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/folia1.4/setdefinitions/tokconfig-nld.foliaset.ttl">
13 <annotator processor="p2" />
14 </token-annotation>
15 <pos-annotation set="https://raw.githubusercontent.com/proycon/folia/master/

↪→setdefinitions/frog-mbpos-cgn">
16 <annotator processor="p3.1" />
17 </pos-annotation>
18 <lemma-annotation set="https://raw.githubusercontent.com/proycon/folia/master/

↪→setdefinitions/frog-mblem-nl">
19 <annotator processor="p3.2" />
20 </lemma-annotation>
21 </annotations>
22 <provenance>
23 <processor xml:id="p1" name="proycon" type="manual" />
24 <processor xml:id="p2" name="ucto" version="0.14" />
25 <processor xml:id="p3" name="frog" version="0.16" begindatetime="2016-11-

↪→15T15:12:00">
26 <processor xml:id="p3.0" name="libfolia" version="1.14" type="generator" />
27 <processor xml:id="p3.1" name="mbpos" version="1.0" />
28 <processor xml:id="p3.2" name="mblem" version="1.1" />
29 </processor>
30 </provenance>
31 <meta id="language">nld</meta>
32 </metadata>
33 <text xml:id="example.deep.text">
34 <s xml:id="example.deep.p.1.s.1">
35 <t>De Russen kennen Nova Zembla sinds de 11e of 12e eeuw, toen handelaars van␣

↪→Novgorod het eiland al aandeden.</t>
36 <w xml:id="example.deep.p.1.s.1.w.1" class="WORD">
37 <t>De</t>
38 <pos class="LID(bep,stan,rest)" confidence="0.779762" head="LID">
39 <feat class="bep" subset="lwtype"/>
40 <feat class="stan" subset="naamval"/>
41 <feat class="rest" subset="npagr"/>
42 </pos>
43 <lemma class="de"/>
44 </w>
45 <w xml:id="example.deep.p.1.s.1.w.2" class="WORD">
46 <t>Russen</t>
47 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
48 <feat class="deeleigen" subset="spectype"/>
49 </pos>
50 <lemma class="Russen"/>
51 </w>

(continues on next page)

26 Chapter 2. Metadata

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

52 <w xml:id="example.deep.p.1.s.1.w.3" class="WORD">
53 <t>kennen</t>
54 <pos class="WW(pv,tgw,mv)" confidence="0.833333" head="WW">
55 <feat class="pv" subset="wvorm"/>
56 <feat class="tgw" subset="pvtijd"/>
57 <feat class="mv" subset="pvagr"/>
58 </pos>
59 <lemma class="kennen"/>
60 </w>
61 <w xml:id="example.deep.p.1.s.1.w.4" class="WORD">
62 <t>Nova</t>
63 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
64 <feat class="deeleigen" subset="spectype"/>
65 </pos>
66 <lemma class="Nova"/>
67 </w>
68 <w xml:id="example.deep.p.1.s.1.w.5" class="WORD">
69 <t>Zembla</t>
70 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
71 <feat class="deeleigen" subset="spectype"/>
72 </pos>
73 <lemma class="Zembla"/>
74 </w>
75 <w xml:id="example.deep.p.1.s.1.w.6" class="WORD">
76 <t>sinds</t>
77 <pos class="VZ(init)" confidence="0.999078" head="VZ">
78 <feat class="init" subset="vztype"/>
79 </pos>
80 <lemma class="sinds"/>
81 </w>
82 <w xml:id="example.deep.p.1.s.1.w.7" class="WORD">
83 <t>de</t>
84 <pos class="LID(bep,stan,rest)" confidence="0.981886" head="LID">
85 <feat class="bep" subset="lwtype"/>
86 <feat class="stan" subset="naamval"/>
87 <feat class="rest" subset="npagr"/>
88 </pos>
89 <lemma class="de"/>
90 </w>
91 <w xml:id="example.deep.p.1.s.1.w.8" class="NUMBER-ORDINAL">
92 <t>11e</t>
93 <pos class="TW(rang,prenom,stan)" confidence="0.990632" head="TW">
94 <feat class="rang" subset="numtype"/>
95 <feat class="prenom" subset="positie"/>
96 <feat class="stan" subset="naamval"/>
97 </pos>
98 <lemma class="11"/>
99 </w>

100 <w xml:id="example.deep.p.1.s.1.w.9" class="WORD">
101 <t>of</t>
102 <pos class="VG(neven)" confidence="0.855677" head="VG">
103 <feat class="neven" subset="conjtype"/>
104 </pos>
105 <lemma class="of"/>
106 </w>
107 <w xml:id="example.deep.p.1.s.1.w.10" class="NUMBER-ORDINAL">

(continues on next page)

2.5. Provenance Data 27

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

108 <t>12e</t>
109 <pos class="TW(rang,prenom,stan)" confidence="0.990632" head="TW">
110 <feat class="rang" subset="numtype"/>
111 <feat class="prenom" subset="positie"/>
112 <feat class="stan" subset="naamval"/>
113 </pos>
114 <lemma class="12"/>
115 </w>
116 <w xml:id="example.deep.p.1.s.1.w.11" class="WORD" space="no">
117 <t>eeuw</t>
118 <pos class="N(soort,ev,basis,zijd,stan)" confidence="0.999633" head="N">
119 <feat class="soort" subset="ntype"/>
120 <feat class="ev" subset="getal"/>
121 <feat class="basis" subset="graad"/>
122 <feat class="zijd" subset="genus"/>
123 <feat class="stan" subset="naamval"/>
124 </pos>
125 <lemma class="eeuw"/>
126 </w>
127 <w xml:id="example.deep.p.1.s.1.w.12" class="PUNCTUATION">
128 <t>,</t>
129 <pos class="LET()" confidence="1" head="LET"/>
130 <lemma class=","/>
131 </w>
132 <w xml:id="example.deep.p.1.s.1.w.13" class="WORD">
133 <t>toen</t>
134 <pos class="VG(onder)" confidence="0.571429" head="VG">
135 <feat class="onder" subset="conjtype"/>
136 </pos>
137 <lemma class="toen"/>
138 </w>
139 <w xml:id="example.deep.p.1.s.1.w.14" class="WORD">
140 <t>handelaars</t>
141 <pos class="N(soort,mv,basis)" confidence="0.99944" head="N">
142 <feat class="soort" subset="ntype"/>
143 <feat class="mv" subset="getal"/>
144 <feat class="basis" subset="graad"/>
145 </pos>
146 <lemma class="handelaar"/>
147 </w>
148 <w xml:id="example.deep.p.1.s.1.w.15" class="WORD">
149 <t>van</t>
150 <pos class="VZ(init)" confidence="0.999469" head="VZ">
151 <feat class="init" subset="vztype"/>
152 </pos>
153 <lemma class="van"/>
154 </w>
155 <w xml:id="example.deep.p.1.s.1.w.16" class="WORD">
156 <t>Novgorod</t>
157 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
158 <feat class="deeleigen" subset="spectype"/>
159 </pos>
160 <lemma class="Novgorod"/>
161 </w>
162 <w xml:id="example.deep.p.1.s.1.w.17" class="WORD">
163 <t>het</t>

(continues on next page)

28 Chapter 2. Metadata

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

164 <pos class="LID(bep,stan,evon)" confidence="0.996855" head="LID">
165 <feat class="bep" subset="lwtype"/>
166 <feat class="stan" subset="naamval"/>
167 <feat class="evon" subset="npagr"/>
168 </pos>
169 <lemma class="het"/>
170 </w>
171 <w xml:id="example.deep.p.1.s.1.w.18" class="WORD">
172 <t>eiland</t>
173 <pos class="N(soort,ev,basis,onz,stan)" confidence="0.996804" head="N">
174 <feat class="soort" subset="ntype"/>
175 <feat class="ev" subset="getal"/>
176 <feat class="basis" subset="graad"/>
177 <feat class="onz" subset="genus"/>
178 <feat class="stan" subset="naamval"/>
179 </pos>
180 <lemma class="eiland"/>
181 </w>
182 <w xml:id="example.deep.p.1.s.1.w.19" class="WORD">
183 <t>al</t>
184 <pos class="BW()" confidence="0.90383" head="BW"/>
185 <lemma class="al"/>
186 </w>
187 <w xml:id="example.deep.p.1.s.1.w.20" class="WORD" space="no">
188 <t>aandeden</t>
189 <pos class="WW(pv,verl,mv)" confidence="0.999559" head="WW">
190 <feat class="pv" subset="wvorm"/>
191 <feat class="verl" subset="pvtijd"/>
192 <feat class="mv" subset="pvagr"/>
193 </pos>
194 <lemma class="aandoen"/>
195 </w>
196 <w xml:id="example.deep.p.1.s.1.w.21" class="PUNCTUATION">
197 <t>.</t>
198 <pos class="LET()" confidence="1" head="LET"/>
199 <lemma class="."/>
200 </w>
201 </s>
202 </text>
203 </FoLiA>

Another example with many annotation types and extensive provenance data:
See also:

Annotation Declarations Set Definitions (Vocabulary)

2.5. Provenance Data 29

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

30 Chapter 2. Metadata

CHAPTER 3

Set Definitions (Vocabulary)

3.1 Introduction

The sets and classes used by the various linguistic annotation types are never defined in the FoLiA documents
themselves, but externally in set definitions.
By using set definitions, a FoLiA document can be validated on a deep level, i.e. the validity of the used
classes can be tested. Set definitions provide semantics to the FoLiA documents that use them and are an
integral part of FoLiA. When set definitions are absent, validation can only be conducted on a shallow level
that is agnostic about all sets and the classes therein.
Recall that all sets that are used need to be declared in the Annotation Declarations section in the document
header and that they point to URLs holding a FoLiA set definitions. If no set definition files are associated,
then a full in-depth validation cannot take place.
The role of FoLiA Set Definitions is:

• to define which classes are valid in a set
• to define which subsets and classes are valid in Features in a set
• to constrain which subsets and classes may co-occur in an annotation of the set
• to allow enumeration over classes and subsets
• to assign human-readable labels to symbolic classes
• to relate classes to external resources defining them (data category registries, linked data)
• to define a hierarchy/taxonomy of classes

Prior to FoLiA v1.4, set definitions were stored in a simple custom XML format, distinct from FoLiA itself,
which we call the legacy format and which is still supported for backward compatibility. Since FoLiA v1.4
however, we strongly prefer and recommend to store the set definitions as RDF [RDF], i.e. the technology
that powers the semantic web. In this way, set definitions provide a formal semantic layer for FoLiA.
Set definitions may be stored in various common RDF serialisation formats. The format can be indicated on
the declarations in the document metadata using the format attribute, recognised values are:

• application/rdf+xml – XML for RDF (assumed for rdf.xml or rdf extensions
• text/turtle – Turtle (for RDF) (assumed for ttl extensions)
• text/n3 – Notation 3 (for RDF) (assumed for n3 extensions)

31

https://www.w3.org/TeamSubmission/turtle/

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• application/foliaset+xml - Legacy FoLiA Set Definition format (XML) (assumed for xml extensions
and in most other cases)

FoLiA applications should attempt to autodetect the format based on the extension. Not all applications may
be able to deal with all formats/serialisations, however.
In this documentation, we will use the Turtle format for RDF, alongside our older legacy format. In all cases,
FoLiA requires that only one set is defined per file, any other defined sets must be subsets of the primary set.
In our legacy XML format, an otherwise empty set definition would look like this:

<?xml version="1.0" encoding="UTF-8"?>
<set
xmlns="http://ilk.uvt.nl/folia"
xml:id="your-set-id" type="closed" label="Human readable label for your set">
</set>

Note that the legacy XML format takes an XML namespace that is always the same (the FoLiA namespace).
In RDF, FoLiA Set Definitions follow a particular model. The model we use is a small superset of the
SKOS model. SKOS is a W3C standard for the representation of Simple Knowledge Organization Systems
[SKOS]. Not everything can be expressed in the SKOS model, so we have some extensions to it which are
formally defined in our set definition schema at https://raw.githubusercontent.com/proycon/folia/master/
schemas/foliasetdefinition.ttl. The RDF namespace for our extension is http://folia.science.ru.nl/
setdefinition#, for which we use the prefix fsd: generally, though this is mere convention.
Some familiarity with RDF and Turtle is recommended for this chapter, but it is also still possible to work
with the XML legacy format, which is a bit more concise and simple, and automatically convert it to Turtle
format using our superset of the SKOS model.
Your own set definitions typically has its own RDF namespace, which in Turtle syntax is defined by the @base
directive at the top of your set definition.

Warning: Never reuse the SKOS or FoLiA Set Definition namespaces!

@base <http://your/namespace/> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix fsd: <http://folia.science.ru.nl/setdefinition#> .

SKOS uses a different terminology than we do, which may be the source of some confusion. We attempt to
map the terms in the following table:

Our term SKOS SKOS class
Set/Subset ID Collection Notation skos:Collection skos:notation

After this preamble, we can define a set as follows:

<#your-set-id>
a skos:Collection ;
skos:notation "your-set-id" ;
skos:prefLabel "Human readable label for your set" ;
fsd:open false .

The first two lines state that http://your/namespace/#your-set-i is a1 SKOS Collection, which is what
we use for FoLiA Sets. The skos:notation property corresponds to the ID of the Set, only one is allowed2 .

1 the a in Turtle syntax is shorthand for rdf:type
2 Technically, SKOS allows multiple, but we restrict it for Set Definitions.

32 Chapter 3. Set Definitions (Vocabulary)

https://raw.githubusercontent.com/proycon/folia/master/schemas/foliasetdefinition.ttl
https://raw.githubusercontent.com/proycon/folia/master/schemas/foliasetdefinition.ttl

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

A set can be either open or closed (default), an open set allows any classes, even if they are not defined. This
can be used for open vocabularies. The fsd:open property is used to indicate this, it is not part of SKOS
but an extension of ours, hence the different namespace prefix.

References

3.2 Classes

A set (collection in SKOS terms) consists of classes (concepts in SKOS terms). Consider a simple part-of-
speech set with three classes. First we define the set and refer to all the classes it contains:

<#simplepos>
a skos:Collection ;
skos:notation "simplepos" ;
skos:prefLabel "A simple part of speech set" ;
skos:member <#N> , <#V> , <#A> .

Then we define the classes:

<#N>
a skos:Concept ;
skos:notation "N" ;
skos:prefLabel "Noun" .

<#V>
a skos:Concept ;
skos:notation "V" ;
skos:prefLabel "Verb" .

<#A>
a skos:Concept ;
skos:notation "A" ;
skos:prefLabel "Adjective" .

The ID (skos:notation) of the class is mandatory for FoLiA Set Definitions and determines a value the
class attribute may take in the FoLiA document, for elements of this set. The skos:prefLabel property,
both on the set itself as well as the classes, carries a human readable description for presentational purposes,
this is optional but highly recommended.
In our legacy set definition format this is fairly straightforward and more concise:

<set
xmlns="http://ilk.uvt.nl/folia"
xml:id="simplepos" type="closed"
label="Simple Part-of-Speech">
<class xml:id="N" label="Noun" />
<class xml:id="V" label="Verb" />
<class xml:id="A" label="Adjective" />

</set>

3.3 Class Hierarchy

In FoLiA Set Definitions, classes can be nested to create more complex hierarchies or taxonomy trees, in
which both nodes and leaves act as valid classes. This is best illustrated in our legacy XML format first.
Consider the following set definition for named entities, in which the location class has been extended into
more fine-grained subclasses.

3.2. Classes 33

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

<set xml:id="namedentities" type="closed" xmlns="http://ilk.uvt.nl/folia">
<class xml:id="per" label="Person" />
<class xml:id="org" label="Organisation" />
<class xml:id="loc" label="Location">
<class xml:id="loc.country" label="Country" />
<class xml:id="loc.street" label="Street" />
<class xml:id="loc.building" label="Building">
<class xml:id="loc.building.hospital" label="Hospital" />
<class xml:id="loc.building.church" label="Church" />
<class xml:id="loc.building.station" label="Station" />

</class>
</class>

</set>

In the SKOS model, this is more verbose as the hierarchy has to be modelled explicitly using the skos:broader
property, as shown in the following excerpt:

<#namedentities>
a skos:Collection ;
skos:member <#loc> , <#loc.country> .

<#loc>
a skos:Concept ;
skos:notation "loc" ;
skos:prefLabel "Location" .

<#loc.country>
a skos:Concept ;
skos:notation "loc.country" ;
skos:prefLabel "Country" ;
skos:broader <#loc> .

It is recommended, but not mandatory, to set the class ID (skos:notation) of any nested classes to represent
a full path, as a full path makes substring queries possible. FoLiA, however, does not dictate this and neither
does it prescribe a delimiter for such paths, so the period in the above example (loc.country) is merely a
convention. Each ID, however, does have to be unique in the entire set.

3.4 Subsets

3.4.1 Features

In addition to a main class, an arbitrary number of features can be added to any annotation element that
takes a set. Each feature pertains to a specific subset in that set and assigns a class in the subset. The
subsets and classes therein are defined in the set definition (See Set Definitions (Vocabulary)), so may be
entirely user-defined.
The element <feat> is used to add features to any kind of annotation. In the following example we make
use of a subset we invented which ties a lemma to its plural form. This is just an example, you can think of
any subset you like and associate all kinds of information with it.

<lemma class="house">
<feat subset="plural" class="houses" />

</lemma>

Note: Do make sure not to use features and create subsets if there is already a more appropriate FoLiA

34 Chapter 3. Set Definitions (Vocabulary)

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

annotation available. For example; don’t use a part-of-speech subset in a lemma set, because there is already
Part-of-Speech Annotation for that.

A more thorough example for part-of-speech tags with features will be explained in the section on Part-of-
Speech Annotation.
Some annotation types take predefined subsets because some features are very commonly used. These subsets
have clearly defined semantics. However, it still depends on the set on whether these can be used, and which
classes these take. Whenever subsets are predefined by FoLiA, they can be assigned directly using XML
attributes. Consider the following example of lexical semantic sense annotation, in which subset synset is a
predefined subset.

<sense class="X" synset="Y" />

This is semantically equivalent to:

<sense class="X">
<feat subset="synset" class="Y" />

</sense>

The following example of event annotation with the feature with predefined subset actor is similar:

<event class="tweet" actor="John Doe">
...
</event>

<event class="tweet">
<feat subset="actor" class="John Doe" />
...
</event>

Features can also be used to assign multiple classes within the same subset, which is impossible with main
classes. In the following example the event is associated with a list of two actors. In this case the XML
attribute shortcut no longer suffices, and the <feat> element must be used explicitly.

<event class="conversation">
<feat subset="actor" class="John Doe" />
<feat subset="actor" class="Jane Doe" />
<p>...</p>
</event>

To recap: the <feat> element can always be used freely to associate any additional classes of any designed
subset with any annotation element. For certain elements, there are predefined subsets, in which case you
can assign them using the XML attribute shortcut. This, however, only applies to the predefined subsets.
Another elaborate example of features can be found in the section on Part-of-Speech Annotation.
The section on Features introduced subsets. Please ensure you are familiar with this notion before continuing
with the current section.
Subset can be defined in a similar fashion to sets. Consider the legacy XML format first:

<set xml:id="simplepos" type="closed" xmlns="http://ilk.uvt.nl/folia">
<class xml:id="N" label="Noun" />
<class xml:id="V" label="Verb" />
<class xml:id="A" label="Adjective" />
<subset xml:id="gender" class="closed">

<class xml:id="m" label="Masculine" />
<class xml:id="f" label="Feminine" />

(continues on next page)

3.4. Subsets 35

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

<class xml:id="n" label="Neuter" />
</subset>

</set>

In RDF, subsets are defined as SKOS Collections, just like the primary set. The primary set refers to the
subsets using the same skos:member relation as is used for classes/concepts.

<#simplepos>
a skos:Collection ;
skos:member <#N> , <#V> , <#A> , <#gender> .

<#gender>
a skos:Collection ;
skos:notation "gender" ;
skos:member <#gender.m> .

<#gender.m>
a skos:Concept ;
skos:notation "m" ;
skos:prefLabel "Location" .

Note that in this example, we prefixed the resource name for the class (#gender.m instead of #m). This is
just a recommended convention as URIs have to be unique and we may want to re-use the m ID in other
subsets as well. The ID in the skos:notation property does not need to carry this prefix, as it needs only
be unique within the subset. This property always determines how it is referenced from the FoLiA document,
so we would still get <feat subset="gender" class="m" />

3.5 Constraints

It is possible to define constriants on which subsets can be used with which classes and which classes within
subsets can be combined, though SKOS has no mechanism to express such constraints. We introduce our
own resources and properties to define to define constraints, in the namespace of our extension (http://
folia.science.ru.nl/setdefinition#, with prefix fsd: in this documentation).
The core of the constraints is the fsd:constrain relation which can be made between any subset
(skos:Collection) and class (skos:Concept). Consider the following Part-of-Speech tag example in which
we constrain the subset gender to only occur with nouns:

<#simplepos>
a skos:Collection ;
skos:member <#N> .

example:N a skos:Concept ;
skos:notation "N" ;
skos:prefLabel "Noun" .

example:gender a skos:Collection ;
skos:member example:masculine, example:feminine, example:neuter ;
fsd:constrain example:N .

The same can be expressed in our legacy format as follows. Note that we left out the definition for the three
genders in the RDF example for brevity.

<set xml:id="simplepos" type="closed" xmlns="http://ilk.uvt.nl/folia">
<class xml:id="N" label="Noun" />

(continues on next page)

36 Chapter 3. Set Definitions (Vocabulary)

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

<subset xml:id="gender" type="closed">
<class xml:id="masculine" label="masculine" />
<class xml:id="feminine" label="feminine" />
<class xml:id="neuter" label="neuter" />
<constrain id="N" />

</subset>
</set>

Multiple constrain relations may be specified, but one has to be aware that this then counts as a conjunction
or intersection. What we often see instead when multiple relations is the use of a fsd:Constraint class,
which acts as a collection of contrain relations and can explicitly express the type (fsd:constraintType) of
matching to apply to the constraints. The type be any of the following:

• "any" - Only of of the constrain relations must match for the constraint to pass
• "all" - All constrain relations must match for the constraint to pass
• "none" - None of the constrain relations must match for the constraint to pass

The other main purpose of the fsd:Constraint class is to avoid repetition, as it allows a complex contraint
to be referenced from multiple locations. Consider the following example, first in our legacy format:

<set xml:id="simplepos" type="closed" xmlns="http://ilk.uvt.nl/folia">
<class xml:id="N" label="Noun" />
<class xml:id="A" label="Adjective" />
<class xml:id="V" label="Verb" />
<subset xml:id="gender" type="closed">
<class xml:id="masculine" label="masculine" />
<class xml:id="feminine" label="feminine" />
<class xml:id="neuter" label="neuter" />
<constrain id="constraint.1" />

</subset>
<subset xml:id="case" type="closed">
<class xml:id="nom" label="nominative" />
<class xml:id="gen" label="genitive" />
<class xml:id="dat" label="dative" />
<class xml:id="acc" label="accusative" />
<constrain id="constraint.1" />

</subset>
<constraint xml:id="constraint.1" type="any">
<constrain id="N" />
<constrain id="A" />

</constraint>
</set>

In RDF, the constraint would be formulated as follows:

example:constraint.1 a fsd:Constraint ;
fsd:constraintType "any" ;
fsd:constrain example:N ;
fsd:constrain example:A .

A fsd::constrain relation may be used within sets (skos:Collection), classes (skos:Concept) as well
as constraints (fsd:Constraint). Similary, a fsd:constrain relation may point to either of the three. All
this combined allows for complex nesting logic.
The following example shows a more complete set definition with various kinds of constraints, we show it
both in legacy XML as well as turtle RDF:

3.5. Constraints 37

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

1 <set xml:id="simplepos" type="closed" xmlns="http://ilk.uvt.nl/folia">
2 <class xml:id="N" label="Noun">
3 <constrain id="constraint.2" />
4 </class>
5

6 <class xml:id="A" label="Adjective">
7 <constrain id="constraint.2" />
8 </class>
9

10 <class xml:id="V" label="Verb">
11 <constrain id="tense" />
12 <constrain id="number" />
13 </class>
14

15 <subset xml:id="gender" type="closed">
16 <class xml:id="m" label="masculine" />
17 <class xml:id="f" label="feminine" />
18 <class xml:id="n" label="neuter" />
19 <constrain id="constraint.1" />
20 </subset>
21

22 <subset xml:id="case" type="closed">
23 <class xml:id="nom" label="nominative" />
24 <class xml:id="gen" label="genitive" />
25 <class xml:id="dat" label="dative" />
26 <class xml:id="acc" label="accusative" />
27 <constrain id="constraint.1" />
28 </subset>
29

30 <subset xml:id="number" type="closed">
31 <class xml:id="s" label="singular" />
32 <class xml:id="p" label="plural" />
33 </subset>
34

35 <subset xml:id="tense" type="closed">
36 <class xml:id="present" label="present" />
37 <class xml:id="past" label="past" />
38 <constrain id="V" />
39 </subset>
40

41 <constraint xml:id="constraint.1" type="any">
42 <!-- This is a constraint expressing which classes the subset using this␣

↪→constraint is valid -->
43 <constrain id="N" />
44 <constrain id="A" />
45 </constraint>
46

47 <constraint xml:id="constraint.2" type="all">
48 <!-- This is a constraint expressing which subsets are required by the class␣

↪→using it-->
49 <constrain id="gender" />
50 <constrain id="case" />
51 <constrain id="number" />
52 </constraint>
53 </set>

38 Chapter 3. Set Definitions (Vocabulary)

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

1 @prefix fsd: <http://folia.science.ru.nl/setdefinition#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
3 @prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
4 @prefix simplepos: <http://folia.science.ru.nl/setdefinition/simplepos#> .
5 @prefix skos: <http://www.w3.org/2004/02/skos/core#> .
6 @prefix xml: <http://www.w3.org/XML/1998/namespace> .
7 @prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
8

9 simplepos:Set a skos:Collection ;
10 skos:member simplepos:A,
11 simplepos:N,
12 simplepos:Subset.case,
13 simplepos:Subset.gender,
14 simplepos:Subset.number,
15 simplepos:Subset.tense,
16 simplepos:V ;
17 skos:notation "simplepos" .
18

19 simplepos:Subset.tense a skos:Collection ;
20 fsd:constrain simplepos:V ;
21 skos:member simplepos:past,
22 simplepos:present ;
23 skos:notation "tense" .
24

25 simplepos:acc a skos:Concept ;
26 fsd:sequenceNumber 4 ;
27 skos:notation "acc" ;
28 skos:prefLabel "accusative" .
29

30 simplepos:dat a skos:Concept ;
31 fsd:sequenceNumber 3 ;
32 skos:notation "dat" ;
33 skos:prefLabel "dative" .
34

35 simplepos:f a skos:Concept ;
36 fsd:sequenceNumber 2 ;
37 skos:notation "f" ;
38 skos:prefLabel "feminine" .
39

40 simplepos:gen a skos:Concept ;
41 fsd:sequenceNumber 2 ;
42 skos:notation "gen" ;
43 skos:prefLabel "genitive" .
44

45 simplepos:m a skos:Concept ;
46 fsd:sequenceNumber 1 ;
47 skos:notation "m" ;
48 skos:prefLabel "masculine" .
49

50 simplepos:n a skos:Concept ;
51 fsd:sequenceNumber 3 ;
52 skos:notation "n" ;
53 skos:prefLabel "neuter" .
54

55 simplepos:nom a skos:Concept ;
56 fsd:sequenceNumber 1 ;
57 skos:notation "nom" ;

(continues on next page)

3.5. Constraints 39

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

58 skos:prefLabel "nominative" .
59

60 simplepos:p a skos:Concept ;
61 fsd:sequenceNumber 2 ;
62 skos:notation "p" ;
63 skos:prefLabel "plural" .
64

65 simplepos:past a skos:Concept ;
66 fsd:sequenceNumber 2 ;
67 skos:notation "past" ;
68 skos:prefLabel "past" .
69

70 simplepos:present a skos:Concept ;
71 fsd:sequenceNumber 1 ;
72 skos:notation "present" ;
73 skos:prefLabel "present" .
74

75 simplepos:s a skos:Concept ;
76 fsd:sequenceNumber 1 ;
77 skos:notation "s" ;
78 skos:prefLabel "singular" .
79

80 simplepos:A a skos:Concept ;
81 fsd:constrain simplepos:constraint.2 ;
82 fsd:sequenceNumber 2 ;
83 skos:notation "A" ;
84 skos:prefLabel "Adjective" .
85

86 simplepos:N a skos:Concept ;
87 fsd:constrain simplepos:constraint.2 ;
88 fsd:sequenceNumber 1 ;
89 skos:notation "N" ;
90 skos:prefLabel "Noun" .
91

92 simplepos:Subset.case a skos:Collection ;
93 fsd:constrain simplepos:constraint.1 ;
94 skos:member simplepos:acc,
95 simplepos:dat,
96 simplepos:gen,
97 simplepos:nom ;
98 skos:notation "case" .
99

100 simplepos:Subset.gender a skos:Collection ;
101 fsd:constrain simplepos:constraint.1 ;
102 skos:member simplepos:f,
103 simplepos:m,
104 simplepos:n ;
105 skos:notation "gender" .
106

107 simplepos:Subset.number a skos:Collection ;
108 skos:member simplepos:p,
109 simplepos:s ;
110 skos:notation "number" .
111

112 simplepos:V a skos:Concept ;
113 fsd:constrain simplepos:number,

(continues on next page)

40 Chapter 3. Set Definitions (Vocabulary)

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

114 simplepos:tense ;
115 fsd:sequenceNumber 3 ;
116 skos:notation "V" ;
117 skos:prefLabel "Verb" .
118

119 simplepos:constraint.1 a fsd:Constraint ;
120 fsd:constrain simplepos:A,
121 simplepos:N ;
122 fsd:constraintType "any" .
123

124 simplepos:constraint.2 a fsd:Constraint ;
125 fsd:constrain simplepos:Subset.case,
126 simplepos:Subset.gender,
127 simplepos:Subset.number ;
128 fsd:constraintType "all" .
129

130

3.6 SKOS

SKOS allows for more expressions to be made, and of course the full power of open linked data is available
up to be used with FoLiA Set Definitions. The previous subsections layed out the minimal requirements for
FoLiA Set Definitions using the SKOS model.
The use of skos:OrderedCollection is currently not supported yet, skos:Collection is mandatory.
Ordering of classes (SKOS Concepts) can currently be indicated through a separate fsd:sequenceNumber
property.
FoLiA Set Definitions must be complete, that is to say that all sets (SKOS collections) and classes (SKOS
concepts) must be fully defined in one and the same set definition file.

Note: The file need not be static but can be dynamically generated server-side; which must be publicly
available from a URL. A set definition must contain one and only one primary set (SKOS collection), all other
sets must be subsets (SKOS collections that are a member of the primary set, no deeper nesting is supported).

See also:

• Annotation Declarations
• Features

3.6. SKOS 41

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

42 Chapter 3. Set Definitions (Vocabulary)

CHAPTER 4

Annotation Types

FoLiA defines various XML elements to represent document structure and various annotations, we can divide
these XML elements into several generic annotation groups. In each of these categories, FoLiA defines specific
elements for specific annotation types. This is a deliberate limit on the extensibility of FoLiA in favour of
specificity; i.e. you can’t just add your own annotation type. If a particular annotation type is not properly
accommodated yet, contact the FoLiA developers and we will see how we can extend FoLiA.
For good measure, we again emphasise that this is a limitation on annotation types only, not on the vocabulary
the annotation types make use of, which is deliberately separated from the FoLiA standard itself. The next
section will elaborate on this.
Below are the categories and underlying annotation types, you can click each for exhaustive information (but
please finish this introductory chapter first):

• Structure Annotation – This category encompasses annotation types that define the structure of a
document, e.g. paragraphs, sentences, words, sections like chapters, lists, tables, etc… These types
are not strictly considered linguistic annotation and equivalents are also commonly found in other
document formats such as HTML, TEI, MarkDown, LaTeX, and others. For FoLiA it provides the
necessary structural basis that linguistic annotation can build on.

– Token Annotation – <w> – This annotation type introduces a tokenisation layer for the document.
The terms token and word are used interchangeably in FoLiA as FoLiA itself does not commit
to a specific tokenisation paradigm. Tokenisation is a prerequisite for the majority of linguistic
annotation types offered by FoLiA and it is one of the most fundamental types of Structure
Annotation. The words/tokens are typically embedded in other types of structure elements, such
as sentences or paragraphs.

– Division Annotation – <div> – Structure annotation representing some kind of division, typically
used for chapters, sections, subsections (up to the set definition). Divisions may be nested at will,
and may include almost all kinds of other structure elements.

– Paragraph Annotation – <p> – Represents a paragraph and holds further structure annotation such
as sentences.

– Head Annotation – <head> – The head element is used to provide a header or title for the structure
element in which it is embedded, usually a division (<div>)

– List Annotation – <list> – Structure annotation for enumeration/itemisation, e.g. bulleted lists.
– Figure Annotation – <figure> – Structure annotation for including pictures, optionally captioned,

in documents.

43

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Vertical Whitespace – <whitespace> – Structure annotation introducing vertical whitespace
– Linebreak –
 – Structure annotation representing a single linebreak and with special facilities

to denote pagebreaks.
– Sentence Annotation – <s> – Structure annotation representing a sentence. Sentence detection is

a common stage in NLP alongside tokenisation.
– Event Annotation – <event> – Structural annotation type representing events, often used in new

media contexts for things such as tweets, chat messages and forum posts (as defined by a user-
defined set definition). Note that a more linguistic kind of event annotation can be accomplished
with Entity Annotation or even Time Segmentation rather than this one.

– Quote Annotation – <quote> – Structural annotation used to explicitly mark quoted speech, i.e.
that what is reported to be said and appears in the text in some form of quotation marks.

– Note Annotation – <note> – Structural annotation used for notes, such as footnotes or warnings
or notice blocks.

– Reference Annotation – <ref> – Structural annotation for referring to other annotation types.
Used e.g. for referring to bibliography entries (citations) and footnotes.

– Table Annotation – <table> – Structural annotation type for creating a simple tabular environ-
ment, i.e. a table with rows, columns and cells and an optional header.

– Part Annotation – <part> – The structure element part is a fairly abstract structure element
that should only be used when a more specific structure element is not available. Most notably,
the part element should never be used for representation of morphemes or phonemes! Part can be
used to divide a larger structure element, such as a division, or a paragraph into arbitrary subparts.

– Utterance Annotation – <utt> – An utterance is a structure element that may consist of words
or sentences, which in turn may contain words. The opposite is also true, a sentence may consist
of multiple utterances. Utterances are often used in the absence of sentences in a speech context,
where neat grammatical sentences can not always be distinguished.

– Entry Annotation – <entry> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Term Annotation – <term> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Definition Annotation – <def> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Example Annotation – <ex> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Examples annotation defines
examples in such collections.

– Hidden Token Annotation – <hiddenw> – This annotation type allows for a hidden token layer in
the document. Hidden tokens are ignored for most intents and purposes but may serve a purpose
when annotations on implicit tokens is required, for example as targets for syntactic movement
annotation.

• Content Annotation – This category groups text content and phonetic content, the former being one
of the most frequent elements in FoLiA and used to associate text (or a phonetic transcription) with a
structural element.

– Text Annotation – <t> – Text annotation associates actual textual content with structural ele-
ments, without it a document would be textless. FoLiA treats it as an annotation like any other.

44 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Phonetic Annotation/Content – <ph> – This is the phonetic analogy to text content (<t>) and
allows associating a phonetic transcription with any structural element, it is often used in a speech
context. Note that for actual segmentation into phonemes, FoLiA has another related type:
Phonological Annotation

– Raw Content – <content> – This associates raw text content which can not carry any further
annotation. It is used in the context of Gap Annotation

• Inline Annotation – This category encompasses (linguistic) annotation types describing a single structural
element. Examples are Part-of-Speech Annotation or Lemmatisation, which often describe a single
token.

– Part-of-Speech Annotation – <pos> – Part-of-Speech Annotation, one of the most common types
of linguistic annotation. Assigns a lexical class to words.

– Lemmatisation – <lemma> – Lemma Annotation, one of the most common types of linguistic
annotation. Represents the canonical form of a word.

– Domain/topic Annotation – <domain> – Domain/topic Annotation. A form of inline annotation
used to assign a certain domain or topic to a structure element.

– Sense Annotation – <sense> – Sense Annotation allows to assign a lexical semantic sense to a
word.

– Error Detection Annotation (DEPRECATED) – <errordetection> – This annotation type is
deprecated in favour of Observation Annotation and only exists for backward compatibility.

– Subjectivity Annotation (DEPRECATED) – <subjectivity> – This annotation type is deprecated
in favour of Sentiment Annotation and only exists for backward compatibility.

– Language Annotation – <lang> – Language Annotation simply identifies the language a part of
the text is in. Though this information is often part of the metadata, this form is considered an
actual annotation.

• Span Annotation – This category encompasses (linguistic) annotation types that span one or more
structural elements. Examples are (Named) Entities or Multi-word Expressions, Dependency Relations,
and many others. FoLiA implements these as a stand-off layer that refers back to the structural elements
(often words/tokens). The layer itself is embedded in a structural level of a wider scope (such as a
sentence).

– Syntactic Annotation – <su> – Assign grammatical categories to spans of words. Syntactic units are
nestable and allow representation of complete syntax trees that are usually the result of consistuency
parsing.

– Chunking – <chunk> – Assigns shallow grammatical categories to spans of words. Unlike syntax
annotation, chunks are not nestable. They are often produced by a process called Shallow Parsing,
or alternatively, chunking.

– Entity Annotation – <entity> – Entity annotation is a broad and common category in FoLiA.
It is used for specifying all kinds of multi-word expressions, including but not limited to named
entities. The set definition used determines the vocabulary and therefore the precise nature of the
entity annotation.

– Dependency Annotation – <dependency> – Dependency relations are syntactic relations between
spans of tokens. A dependency relation takes a particular class and consists of a single head
component and a single dependent component.

– Time Segmentation – <timesegment> – FoLiA supports time segmentation to allow for more fine-
grained control of timing information by associating spans of words/tokens with exact timestamps.
It can provide a more linguistic alternative to Event Annotation.

– Coreference Annotation – <coreferencechain> – Relations between words that refer to the
same referent (anaphora) are expressed in FoLiA using Coreference Annotation. The co-reference
relations are expressed by specifying the entire chain in which all links are coreferent.

– Semantic Role Annotation – <semrole> – This span annotation type allows for the expression of
semantic roles, or thematic roles. It is often used together with Predicate Annotation

45

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Predicate Annotation – <predicate> – Allows annotation of predicates, this annotation type is
usually used together with Semantic Role Annotation. The types of predicates are defined by a
user-defined set definition.

– Observation Annotation – <observation> – Observation annotation is used to make an obser-
vation pertaining to one or more word tokens. Observations offer a an external qualification on
part of a text. The qualification is expressed by the class, in turn defined by a set. The precise
semantics of the observation depends on the user-defined set.

– Sentiment Annotation – <sentiment> – Sentiment analysis marks subjective information such as
sentiments or attitudes expressed in text. The sentiments/attitudes are defined by a user-defined
set definition.

– Statement Annotation – <statement> – Statement annotation, sometimes also refered to as
attribution, allows to decompose statements into the source of the statement, the content of the
statement, and the way these relate, provided these are made explicit in the text.

– Modality Annotation – <modality> – Modality annotation is used to describe the relationship
between cue word(s) and the scope it covers. It is primarily used for the annotation of negation,
but also for the annotation of factuality, certainty and truthfulness:.

• Subtoken Annotation – This category contains morphological annotation and phonological annotation,
i.e. the segmentation of a word into morphemes and phonemes, and recursively so if desired. It is
a special category that mixes characteristics from structure annotation (the morpheme and phoneme
elements are very structure-like) and also from span annotation, as morphemes and phonemes are
embedded in an annotation layer and refer back to the text/phonetic content they apply to. Like
words/tokens, these elements may also be referenced from wref elements.

– Morphological Annotation – <morpheme> – Morphological Annotation allows splitting a
word/token into morphemes, morphemes itself may be nested. It is embedded within a layer
morphology which can be embedded within word/tokens.

– Phonological Annotation – <phoneme> – The smallest unit of annotatable speech in FoLiA is
the phoneme level. The phoneme element is a form of structure annotation used for phonemes.
Alike to morphology, it is embedded within a layer phonology which can be embedded within
word/tokens.

• Text Markup Annotation – The text content element (<t>) allows within its scope elements of a this
category; these are Text Markup elements, they always contain textual content and apply a certain
markup to certain spans of the text. One of it’s common uses is for styling (emphasis, underlines, etc.).
Text markup elements may be nested.

– Style Annotation – <t-style> – This is a text markup annotation type for applying styling to
text. The actual styling is defined by the user-defined set definition and can for example included
classes such as italics, bold, underline

– Hyphenation – <t-hbr> – This is a text-markup annotation form that indicates where in the
original text a linebreak was inserted and a word was hyphenised.

– Horizontal Whitespace – <t-hspace> – Markup annotation introducing horizontal whitespace
• Higher-order Annotation – Higher-order Annotation groups a very diverse set of annotation types that

are considered annotations on annotations
– Correction Annotation – <correction> – Corrections are one of the most complex annotation

types in FoLiA. Corrections can be applied not just over text, but over any type of structure
annotation, inline annotation or span annotation. Corrections explicitly preserve the original, and
recursively so if corrections are done over other corrections.

– Gap Annotation – <gap> – Sometimes there are parts of a document you want to skip and not
annotate at all, but include as is. This is where gap annotation comes in, the user-defined set
may indicate the kind of gap. Common omissions in books are for example front-matter and
back-matter, i.e. the cover.

– Relation Annotation – <relation> – FoLiA provides a facility to relate arbitrary parts of your
document with other parts of your document, or even with parts of other FoLiA documents or

46 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

external resources, even in other formats. It thus allows linking resources together. Within this
context, the xref element is used to refer to the linked FoLiA elements.

– Span Relation Annotation – <spanrelation> – Span relations are a stand-off extension of relation
annotation that allows for more complex relations, such as word alignments that include many-
to-one, one-to-many or many-to-many alignments. One of its uses is in the alignment of multiple
translations of (parts) of a text.

– Metric Annotation – <metric> – Metric Annotation is a form of higher-order annotation that
allows annotation of some kind of measurement. The type of measurement is defined by the class,
which in turn is defined by the set as always. The metric element has a value attribute that stores
the actual measurement, the value is often numeric but this needs not be the case.

– String Annotation – <str> – This is a form of higher-order annotation for selecting an arbitrary
substring of a text, even untokenised, and allows further forms of higher-order annotation on the
substring. It is also tied to a form of text markup annotation.

– Alternative Annotation – <alt> – This form of higher-order annotation encapsulates alternative
annotations, i.e. annotations that are posed as an alternative option rather than the authoratitive
chosen annotation

– Comment Annotation – <comment> – This is a form of higher-order annotation that allows you to
associate comments with almost all other annotation elements

– Description Annotation – <desc> – This is a form of higher-order annotation that allows you to
associate descriptions with almost all other annotation elements

– External Annotation – <external> – External annotation makes a reference to an external FoLiA
document whose structure is inserted at the exact place the external element occurs.

4.1 Content Annotation

This category groups text content and phonetic content, the former being one of the most frequent elements
in FoLiA and used to associate text (or a phonetic transcription) with a structural element.
FoLiA defines the following types of content annotation:

• Content Annotation – This category groups text content and phonetic content, the former being one
of the most frequent elements in FoLiA and used to associate text (or a phonetic transcription) with a
structural element.

– Text Annotation – <t> – Text annotation associates actual textual content with structural ele-
ments, without it a document would be textless. FoLiA treats it as an annotation like any other.

– Phonetic Annotation/Content – <ph> – This is the phonetic analogy to text content (<t>) and
allows associating a phonetic transcription with any structural element, it is often used in a speech
context. Note that for actual segmentation into phonemes, FoLiA has another related type:
Phonological Annotation

– Raw Content – <content> – This associates raw text content which can not carry any further
annotation. It is used in the context of Gap Annotation

4.1.1 Text Annotation

Text annotation associates actual textual content with structural elements, without it a document would be
textless. FoLiA treats it as an annotation like any other.

Specification

Annotation Category Content Annotation

4.1. Content Annotation 47

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Declaration <text-annotation set="..."> (note: set is optional for this annotation type; if
you declare this annotation type to be setless you can not assign classes)

Version History Since the beginning, revised since v0.6
Element <t>

API Class TextContent (FoLiApy API Reference)
Required Attributes

Optional Attributes

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context <current> (Correction Annotation), <def> (Definition Annotation), <div> (Di-
vision Annotation), <entry> (Entry Annotation), <event> (Event Annotation), <ex> (Ex-
ample Annotation), <figure> (Figure Annotation), <head> (Head Annotation), <hiddenw>
(Hidden Token Annotation), <list> (List Annotation), <morpheme> (Morphological Anno-
tation), <new> (Correction Annotation), <note> (Note Annotation), <original> (Cor-
rection Annotation), <p> (Paragraph Annotation), <part> (Part Annotation), <phoneme>
(Phonological Annotation), <quote> (Quote Annotation), <ref> (Reference Annotation),
<s> (Sentence Annotation), <str> (String Annotation), <suggestion> (Correction Annota-
tion), <term> (Term Annotation), <utt> (Utterance Annotation), <w> (Token Annotation)

48 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TextContent.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Explanation

Text is considered an annotation like any other rather than a given in FoLiA, but it is ubiquitous in almost
all FoLiA documents, as a document without text is a rare occurrence. Text content is always represented by
the <t> element and can be associated with Structure Annotation and Subtoken Annotation. Consider text
associated with a words in a sentence:

<s xml:id="s.1">
<w xml:id="s.1.w.1">

<t>Hello</t>
</w>
<w xml:id="s.1.w.2">

<t>world</t>
</w>

</s>

FoLiA is not just a format for holding tokenised text, although tokenisation is a prerequisite for most all kinds
of linguistic annotation. We can associate text content with a sentence as such:

<s xml:id="s.1">
<t>Hello world</t>

</s>

Untokenised FoLiA documents with text on higher structural levels are in fact common input to FoLiA-aware
tokenisers.
As FoLiA’s representation of structure is hierarchical, you can nest various structure elements, but at the
same time you can also associate text with structure elements on different levels, so specifying text on both
the sentence and word level is valid too:

<s xml:id="s.1">
<t>Hello world</t>
<w xml:id="s.1.w.1">

<t>Hello</t>
</w>
<w xml:id="s.1.w.2">

<t>world</t>
</w>

</s>

We call the association of text content on multiple structural levels text redundancy, it has its uses in
preserving the untokenised original text, and facilating the job for parsers and tools.
If this kind of redundancy is used (it is not mandatory!), you may optionally point back to the text content
of its parent structure element by specifying the offset attribute:

<p xml:id="example.p.1">
<t>This is a paragraph containing only one sentence.</t>
<s xml:id="example.p.1.s.1">

<t offset="0">This is a paragraph containing only one sentence.</t>
<w xml:id="example.p.1.s.1.w.1">

<t offset="0">This</t>
</w>
<w xml:id="example.p.1.s.1.w.2">

<t offset="5">is</t>
</w>
...
<w xml:id="example.p.1.s.1.w.8" space="no">

<t offset="40">sentence</t>
(continues on next page)

4.1. Content Annotation 49

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</w>
<w xml:id="example.p.1.s.1.w.9">

<t offset="48">.</t>
</w>

</s>
</p>

Note: Offsets in FoLiA are always zero indexed (i.e, the first offset is zero, not one) and count
unicode codepoints (as opposed to bytes). Offsets always refer to a specific ‘normalized form
<http://www.unicode.org/reports/tr15/‘_ of the text: Unicode Normal Form Composed (NFC). This
affects how certain characters (notably those with diacritics) are encoded. FoLiA libraries should take care of
this for you automatically.

Offsets can be used to refer back from deeper text-content elements. This does imply that there are some
challenges to solve: First of all, by default, the offset refers to the first structural parent of whatever text-
supporting element the text content (<t>) is a member of. If a level is missing we have to explicitly specify
this reference using the ref attribute. We show this in the following example, where there is no text content
for the sentence, and we refer directly to the paragraph’s text:

<p xml:id="example.p.1">
<t>Hello. This is a sentence. Bye!</t>
<s xml:id="example.p.1.s.1">

<w xml:id="example.p.1.s.1.w.1">
<t ref="example.p.1" offset="7">This</t>
</w>
<w xml:id="example.p.1.s.1.w.2">
<t ref="example.p.1" offset="12">is</t>
</w>
<w xml:id="example.p.1.s.1.w.3">
<t ref="example.p.1" offset="15">a</t>
</w>
<w xml:id="example.p.1.s.1.w.4" space="no">
<t ref="example.p.1" offset="17">sentence</t>
</w>
<w xml:id="example.p.1.s.1.w.5">
<t ref="example.p.1" offset="25">.</t>
</w>

</s>
</p>

Text content is by default expected to be untokenised for higher-level structure; in w structure elements it by
definition is tokenised, as that is precisely what provides the tokenisation layer. Text content elements may
never be empty nor contain only whitespace or non-printable characters, in such circumstances you simply
omit the text-content element altogether.
The notion of text redundancy can be useful but also creates room for error, the text on a higher level may
not correspond with the text on a deeper level, as in the following erroneous example:

<s xml:id="s.1">
<t>Goodbye world</t>
<w xml:id="s.1.w.1">

<t>Hello</t>
</w>
<w xml:id="s.1.w.2">

<t>world</t>
(continues on next page)

50 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</w>
</s>

FoLiA validators (since version 1.5) will not accept this and produce a text consistency error, so this is invalid
FoLiA and should be rejected. Similar text consistency errors occur if you specify offsets that are incorrect.

Whitespace

Leading and trailing whitespace within a text content element is not significant (since version 2.4.1 but with
backward effect). Double whitespace is collapsed to a single. As whitespace we consider spaces, tabs, newlines
and carriage returns, so all of the following snippets have the identical text to be or not to be and the
offset for To is 0:

<t>To be or not to be</t>

<t> To be or not to be</t>

<t> To be or not to be</t>

<t>To be or not to be </t>

<t>
To be or not to be</t>

<t>
To be or not to be</t>

<t>To be
or not to be</t>

<t>
To
be
or
not
to
be</t>

This same principle applies to Text Markup Annotation, the following three are semantically identical:

<t>To <t-style class="bold">be</t-style> or not to be</t>

<t>To <t-style class="bold"> be </t-style> or not to be</t>

<t>
To
<t-style class="bold">be</t-style>
or not to be

</t>

If you want to encode linebreaks, you need to explicitly use Linebreak (
), as otherwise it will not be
significant:

<t>To be

or not to be</t>

4.1. Content Annotation 51

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Whitespace before explicit linebreaks is insignificant (since FoLiA v2.5.1), so the following two examples are
identical to the one above:

<t>To be

or not to be</t>

<t>
To be

or not to be

</t>

As mentioned before, empty text is explicitly forbidden in FoLiA. All of the following are identical semantically,
and all will produce an empty text error:

<t></t>

<t/>

<t> </t>

<t>
</t>

The rule here is, empty text is no text at all, so you should omit the <t> element entirely in such cases.

Note: The rules regarding whitespace prior to FoLiA v2.5 and v2.4.1 were different and not as well-defined
yet.

• prior to FoLiA v2.4.1 all whitespace and linebreaks were interpreted as significant
• since FoLiA v2.4.1 leading and trailing whitespace was stripped, but not all whitespace was collapsed

yet.
FoLiA validators will be forgiving when checking the text consistency and offsets in older FoLiA documents.
The new rules will be applied first, but fallbacks wil test again older rules in such cases, retaining backward
compatibility.

Note: FoLiA (since v2.5) and TEI are comparable in the way they treat XML whitespace. TEI has an
elaborate article on the subject that may provide further insight.

Preserving whitespace (advanced)

What if you DO explicitly want to encode a double space, an initial space or a trailing space? Though
generally not recommended, this may be needed if you want to stay true to the untokenised original in a very
strict sense. The You can set the xml:space="preserve" attribute on any text content or text markup
element to indicate that you want to preserve the spaces as-is. Consider the following distinct examples:

<t>To be or not to be</t>

<t xml:space="preserve">To be or not to be</t>

Without xml:space="preserve", the texts would be identical. This attribute is automatically inherited by
child elements, you will need to set xml:space="default" if you want to revert to the normal behaviour
when nesting text markup.
Note that even when preserving spaces, FoLiA does not accept empty (whitespace-only) text nodes.

52 Chapter 4. Annotation Types

https://wiki.tei-c.org/index.php/XML_Whitespace

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Instead of using xml:space="preserve", you are encouraged to use the more explicit Horizontal Whitespace
using the <t-hspace/> element:

<t>To be<t-hspace class="long" />or not to be</t>

Note: FoLiA does not accept XML CDATA in text content or text markup elements. It will be treated as
it if were normal text. CDATA only makes sense when used with Gap Annotation.

Text classes (advanced)

It is possible to associate multiple text content elements with the same structural element, and thus
associating multiple texts with the same element. You may wonder what could possibly be the point of such
extra complexity. But there is a clear use case when dealing with for example corrections, or wanting to
associate the text version just after a processing step such as Optical Character Recognition or any another
kind of normalisation.
Text annotation, like most forms of annotations in FoLiA, is bound to the same paradigm of sets and classes.
You can assign a class to your text content. And FoLiA allows you to associate multiple text content
elements of different classes in the same structural element. Text content that has no explicitly associated
class obtains the current class by default and is the only situation in which FoLiA actually predefines a class
for a set. We call it current because it is considered the most current and up-to-date text layer, and the
default unless explicitly specified otherwise. We allow you to omit it as it is so common and for most FoLiA
documents you will not make use of multiple text classes and only use a single one.
Like all annotations, text annotation needs to be explicitly declared, declaring a set is only needed if you
assign custom classes, otherwise a built-in set that defines current will be used automatically.
Orthographical corrections (see also Correction Annotation) are challenging because they can be applied to
text content and thus change the text. Corrections are often applied on the token level, but you may want
them propagated to the text content of sentences or paragraphs whilst at the same time wanting to retain
the text how it originally was. This can be accomplished by introducing text content of a different class.
Below is an example illustrating the usage of multiple classes, three to be precise: the default current class
showing the normal text, an original class showing text prior to correction, and a ocroutput class showing
the text as produced by an OCR engine. To show the flexibility, offsets are added, but these are of course
always optional. Note that when an offset is specified, it always refers to a text-content element of the same
class! We first give an example where the correction is implicit:

<p xml:id="example.p.1">
<t>Hello. This is a sentence. Bye!</t>
<t class="original">Hello. This iz a sentence. Bye!</t>
<t class="ocroutput">Hell0 Th1s iz a sentence, Bye1</t>
<s xml:id="example.p.1.s.1">

<t offset="7">This is a sentence.</t>
<t class="original" offset="7">This is a sentence.</t>
<t class="ocroutput" offset="6">Th1s iz a sentence,</t>
<w xml:id="example.p.1.s.1.w.1">
<t offset="0">This</t>
<t class="ocroutput" offset="0">Th1s</t>
</w>
<w xml:id="example.p.1.s.1.w.2">

<t offset="5">is</t>
<t offset="5" class="original">iz</t>
<t offset="5" class="ocroutput">iz</t>

</w>
<w xml:id="example.p.1.s.1.w.3">
<t offset="8">a</t>

(continues on next page)

4.1. Content Annotation 53

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

<t offset="8" class="original">a</t>
<t offset="8" class="ocroutput">a</t>
</w>
<w xml:id="example.p.1.s.1.w.4" space="no">
<t offset="10">sentence</t>
</w>
<w xml:id="example.p.1.s.1.w.5">
<t offset="48">.</t>
<t offset="48" class="original">.</t>
<t offset="48" class="ocroutput">,</t>
</w>

</s>
</p>

Next, we give an example in which the correction is explicit, making use of Correction Annotation, which is
one of the most complex annotation types in FoLiA. We leave out the ocr text class:

<p xml:id="example.p.1">
<t>Hello. This is a sentence. Bye!</t>
<t class="original">Hello. This iz a sentence. Bye!</t>
<s xml:id="example.p.1.s.1">
<t offset="7">This is a sentence.</t>
<t class="original" offset="7">This is a sentence.</t>
<w xml:id="example.p.1.s.1.w.1">
<t offset="0">This</t>

</w>
<w xml:id="example.p.1.s.1.w.2">
<correction>
<new>
<t offset="5">is</t>

</new>
<original>
<t offset="5" class="original">iz</t>

</original>
</correction>

</w>
<w xml:id="example.p.1.s.1.w.3">
<t offset="8">a</t>

</w>
<w xml:id="example.p.1.s.1.w.4" space="no">
<t offset="10">sentence</t>

</w>
<w xml:id="example.p.1.s.1.w.5">
<t offset="48">.</t>

</w>
</s>

</p>

See also:

• Correction Annotation
• String Annotation

54 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Text class attribute (advanced)

So as we have just seen, FoLiA allows for multiple text content elements on the same structural elements,
these other text content elements must carry a different class. This indicates an alternative text for the
same element and is used for instance for pre-OCR vs. post-OCR or pre-normalisation vs. post-normalisation
distinctions, or for transliterations.
When adding linguistic annotations on a structure element that has multiple text representations, it may be
desirable to explicitly state which text class was used in establishing the annotation. This is done with the
textclass attribute on any token or span annotation element. By default, this attribute is omitted, which
implies it points to the default current text class.
Consider the following Part-of-Speech and lemma annotation on a word with two text classes, one representing
the spelling as it occurs in the document, and one representing a more contemporary spelling. The following
example makes it explicit that the PoS and lemma annotations are based on the latter text class.

<w class="WORD" xml:id="s.1.w.3">
<t>aengename</t>
<t class="contemporary">aangename</t>
<pos class="ADJ" textclass="contemporary" />
<lemma class="aangenaam" textclass="contemporary" />

</w>

Note that if you want to add another PoS annotation or lemma that is derived from another textclass, you
will need to add those as an alternative (See Alternative Annotation), as the usual restrictions apply, there
can be only one of each of a given set.
For span annotation, you can apply the textclass attribute in a similar fashion:

<entities>
<entity class="per" textclass="contemporary">
<wref id="s.1.w.5" t="John"/>
<wref id="s.1.w.6" t="Doe"/>

</entity>
</entities>

4.1.2 Phonetic Annotation/Content

This is the phonetic analogy to text content (<t>) and allows associating a phonetic transcription with any
structural element, it is often used in a speech context. Note that for actual segmentation into phonemes,
FoLiA has another related type: Phonological Annotation

Specification

Annotation Category Content Annotation
Declaration <phon-annotation set="..."> (note: set is optional for this annotation type; if

you declare this annotation type to be setless you can not assign classes)
Version History Since v0.12
Element <ph>

API Class PhonContent (FoLiApy API Reference)
Required Attributes

Optional Attributes

4.1. Content Annotation 55

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.PhonContent.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation)
Valid Context <current> (Correction Annotation), <def> (Definition Annotation), <div> (Di-

vision Annotation), <event> (Event Annotation), <ex> (Example Annotation), <head>
(Head Annotation), <hiddenw> (Hidden Token Annotation), <list> (List Annotation),
<morpheme> (Morphological Annotation), <new> (Correction Annotation), <note> (Note
Annotation), <original> (Correction Annotation), <p> (Paragraph Annotation), <part>
(Part Annotation), <phoneme> (Phonological Annotation), <ref> (Reference Annotation),
<s> (Sentence Annotation), <str> (String Annotation), <suggestion> (Correction Annota-
tion), <term> (Term Annotation), <utt> (Utterance Annotation), <w> (Token Annotation)

Explanation

Written text is always contained in the text content element (<t>, see Text Annotation), for phonology there
is a similar counterpart that behaves almost identically: <ph>. This element holds a phonetic or phonological
transcription. It is used in a very similar fashion:

<utt src="helloworld.mp3" begintime="..." endtime="...">
<ph>hel�o� w��ld</ph>
<w xml:id="example.utt.1.w.1" begintime="..." endtime="...">

<ph>hel�o�</ph>
</w>
<w xml:id="example.utt.1.w.2" begintime="..." endtime="...">

<ph>w��ld</ph>
</w>

</utt>

56 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Like the Text Annotation, the <ph> element supports the offset attribute, referring to the offset in the
phonetic transcription for the parent structure. The first index being zero. It also support multiple classes
(analogous to text classes), the implicit default and predefined class being current. You could imagine using
this for different notation systems (IPA , SAMPA, pinyin, etc…).
Phonetic transcription and text content can also go together without problem:

<utt>
<ph>hel�o� w��ld</ph>
<t>hello world</t>
<w xml:id="example.utt.1.w.1">

<ph offset="0">hel�o�</ph>
<t offset="0">hello</t>

</w>
<w xml:id="example.utt.1.w.2">

<ph offset="8">w��ld</ph>
<t offset="6">world</t>

</w>
</utt>

Note: You should still use the normal Text Annotation for a normal textual transcription of the speech.
This annotation type is reserved for phonetic/phonological transcriptions.

See also:

If you want to actually do segmentation into phonemes, see Phonological Annotation.

Example

A simple example document:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <phon-annotation>
6 <annotator processor="p1" />
7 </phon-annotation>
8 <utterance-annotation>
9 <annotator processor="p1" />

10 </utterance-annotation>
11 <token-annotation>
12 <annotator processor="p1" />
13 </token-annotation>
14 </annotations>
15 <provenance>
16 <processor xml:id="p1" name="proycon" type="manual" />
17 </provenance>
18 </metadata>
19 <speech xml:id="example.speech">
20 <utt xml:id="example.utt.1" src="helloworld.mp3" begintime="00:00:01.000"␣

↪→endtime="00:00:02.000">
21 <ph>hel�o� w��ld</ph>
22 <w xml:id="example.utt.1.w.1" begintime="00:00:00.000" endtime="00:00:01.000">
23 <ph>hel�o�</ph>
24 </w>

(continues on next page)

4.1. Content Annotation 57

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

25 <w xml:id="example.utt.1.w.2" begintime="00:00:01.000" endtime="00:00:02.000">
26 <ph>w��ld</ph>
27 </w>
28 </utt>
29 </speech>
30 </FoLiA>

4.1.3 Raw Content

This associates raw text content which can not carry any further annotation. It is used in the context of Gap
Annotation

Specification

Annotation Category Content Annotation
Declaration <rawcontent-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning, but revised and made a proper annotation type in v2.0
Element <content>

API Class Content (FoLiApy API Reference)
Required Attributes

Optional Attributes

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

58 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Content.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation)
Valid Context <gap> (Gap Annotation)

Explanation

The content element associates raw text content with an element, it is specifically used in the context of Gap
Annotation. The content can carry no further annotations.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <gap-annotation set="adhoc">
12 <annotator processor="p1" />
13 </gap-annotation>
14 <rawcontent-annotation>
15 <annotator processor="p1" />
16 </rawcontent-annotation>
17 <description-annotation>
18 <annotator processor="p1" />
19 </description-annotation>
20 <paragraph-annotation>
21 <annotator processor="p1" />
22 </paragraph-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <gap class="frontmatter">
30 <desc>This is the cover of the book</desc>
31 <content>
32 <![CDATA[
33

34 SHOW WHITE AND THE SEVEN DWARFS
35

36

37 by the Brothers Grimm
38

39 first edition
40

41

42 Copyright(c) blah blah
43]]>
44 </content>

(continues on next page)

4.1. Content Annotation 59

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

45 </gap>
46 <div xml:id="example.div.1" class="chapter" n="1">
47 <t>In the <t-gap class="illegible" /> there was a princess...</t>
48 </div>
49 </text>
50 </FoLiA>

4.2 Higher-order Annotation

Higher-order Annotation groups a very diverse set of annotation types that are considered annotations on
annotations
FoLiA defines the following types of higher-order annotation:

• Higher-order Annotation – Higher-order Annotation groups a very diverse set of annotation types that
are considered annotations on annotations

– Correction Annotation – <correction> – Corrections are one of the most complex annotation
types in FoLiA. Corrections can be applied not just over text, but over any type of structure
annotation, inline annotation or span annotation. Corrections explicitly preserve the original, and
recursively so if corrections are done over other corrections.

– Gap Annotation – <gap> – Sometimes there are parts of a document you want to skip and not
annotate at all, but include as is. This is where gap annotation comes in, the user-defined set
may indicate the kind of gap. Common omissions in books are for example front-matter and
back-matter, i.e. the cover.

– Relation Annotation – <relation> – FoLiA provides a facility to relate arbitrary parts of your
document with other parts of your document, or even with parts of other FoLiA documents or
external resources, even in other formats. It thus allows linking resources together. Within this
context, the xref element is used to refer to the linked FoLiA elements.

– Span Relation Annotation – <spanrelation> – Span relations are a stand-off extension of relation
annotation that allows for more complex relations, such as word alignments that include many-
to-one, one-to-many or many-to-many alignments. One of its uses is in the alignment of multiple
translations of (parts) of a text.

– Metric Annotation – <metric> – Metric Annotation is a form of higher-order annotation that
allows annotation of some kind of measurement. The type of measurement is defined by the class,
which in turn is defined by the set as always. The metric element has a value attribute that stores
the actual measurement, the value is often numeric but this needs not be the case.

– String Annotation – <str> – This is a form of higher-order annotation for selecting an arbitrary
substring of a text, even untokenised, and allows further forms of higher-order annotation on the
substring. It is also tied to a form of text markup annotation.

– Alternative Annotation – <alt> – This form of higher-order annotation encapsulates alternative
annotations, i.e. annotations that are posed as an alternative option rather than the authoratitive
chosen annotation

– Comment Annotation – <comment> – This is a form of higher-order annotation that allows you to
associate comments with almost all other annotation elements

– Description Annotation – <desc> – This is a form of higher-order annotation that allows you to
associate descriptions with almost all other annotation elements

– External Annotation – <external> – External annotation makes a reference to an external FoLiA
document whose structure is inserted at the exact place the external element occurs.

60 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.2.1 Correction Annotation

Corrections are one of the most complex annotation types in FoLiA. Corrections can be applied not just over
text, but over any type of structure annotation, inline annotation or span annotation. Corrections explicitly
preserve the original, and recursively so if corrections are done over other corrections.

Specification

Annotation Category Higher-order Annotation
Declaration <correction-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since v0.4
Element <correction>

API Class Correction (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

4.2. Higher-order Annotation 61

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Correction.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <current> (Correction Annotation),
<desc> (Description Annotation), <errordetection> (Error Detection Annotation (DEP-
RECATED)), <metric> (Metric Annotation), <new> (Correction Annotation), <original>
(Correction Annotation), <suggestion> (Correction Annotation)

Valid Context <alt> (Alternative Annotation), <chunking> (Chunking), <coreferences>
(Coreference Annotation), <current> (Correction Annotation), <def> (Definition An-
notation), <dependencies> (Dependency Annotation), <div> (Division Annotation),
<entities> (Entity Annotation), <entry> (Entry Annotation), <event> (Event Anno-
tation), <ex> (Example Annotation), <figure> (Figure Annotation), <head> (Head An-
notation), <hiddenw> (Hidden Token Annotation),
 (Linebreak), <list> (List Anno-
tation), <modalities> (Modality Annotation), <morpheme> (Morphological Annotation),
<morphology> (Morphological Annotation), <new> (Correction Annotation), <note> (Note
Annotation), <observations> (Observation Annotation), <original> (Correction An-
notation), <p> (Paragraph Annotation), <part> (Part Annotation), <phoneme> (Phono-
logical Annotation), <phonology> (Phonological Annotation), <quote> (Quote Annota-
tion), <ref> (Reference Annotation), <semroles> (Semantic Role Annotation), <s> (Sen-
tence Annotation), <sentiments> (Sentiment Annotation), <spanrelations> (Span Re-
lation Annotation), <statements> (Statement Annotation), <str> (String Annotation),
<suggestion> (Correction Annotation), <syntax> (Syntactic Annotation), <table> (Ta-
ble Annotation), <term> (Term Annotation), <timing> (Time Segmentation), <utt> (Ut-
terance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annotation)

Explanation & Examples

Correction annotation is arguably one of the most complex annotation forms in FoLiA. It is a form of Higher-
order Annotation which allows to annotate corrections on many types of annotation, including correction of
text (i.e. spelling correction), of Inline Annotation, Span Annotation and even over Structure Annotation.
All corrections are annotated using the <correction> element. The following example shows a spelling
correction of the misspelled word treee to its corrected form tree.

<w xml:id="example.p.1.s.1.w.1">
<correction xml:id="TEST-000000001.p.1.s.1.w.1.c.1"
class="spelling">

<new>
<t>tree</t>

</new>
<original>

<t>treee</t>
</original>

</correction>
</w>

62 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

The class indicates the kind of correction, according to a user-defined set definition (see Set Definitions
(Vocabulary)). The <new> element holds the actual content of the correction. The <original> element
holds the content prior to correction. In this example, what we are correcting is the actual textual content
(Text Annotation, <t>).
Corrections can be nested and we want to retain a full back-log. The following example illustrates the word
treee that has been first mis-corrected to three and subsequently corrected again to tree:

1 <?xml version='1.0' encoding='utf-8'?>
2 <FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia"␣

↪→xml:id="page1263" version="2.0.0">
3 <metadata type="native">
4 <annotations>
5 <token-annotation>
6 <annotator processor="p1" />
7 </token-annotation>
8 <sentence-annotation>
9 <annotator processor="p1" />

10 </sentence-annotation>
11 <text-annotation>
12 <annotator processor="p1" />
13 </text-annotation>
14 <correction-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/spellingcorrection.foliaset.xml">
15 <annotator processor="johndoe" />
16 <annotator processor="janedoe" />
17 </correction-annotation>
18 </annotations>
19 <provenance>
20 <processor xml:id="p1" name="proycon" type="manual" />
21 <processor xml:id="johndoe" name="johndoe" type="manual" />
22 <processor xml:id="janedoe" name="janedoe" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <s xml:id="example.s.1">
27 <t>Watch that tree</t>
28 <w xml:id="example.s.1.w.1">
29 <t>Watch</t>
30 </w>
31 <w xml:id="example.s.1.w.2">
32 <t>that</t>
33 </w>
34 <w xml:id="example.s.1.w.3">
35 <correction xml:id="example.correction.2" class="spelling"
36 processor="janedoe" confidence="1.0">
37 <new>
38 <t>tree</t>
39 </new>
40 <original>
41 <correction xml:id="example.correction.1"
42 class="spelling" processor="johndoe" confidence="0.6">
43 <new>
44 <t>three</t>
45 </new>
46 <original>
47 <t>treee</t>
48 </original>

(continues on next page)

4.2. Higher-order Annotation 63

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

49 </correction>
50 </original>
51 </correction>
52 </w>
53 </s>
54 </text>
55 </FoLiA>

In the examples above what we corrected was the actual textual content (<t>). However, it is also possible
to correct other annotations in exactly the same way. The next example corrects a part-of-speech tag:

1 <?xml version='1.0' encoding='utf-8'?>
2 <FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia"␣

↪→xml:id="page1263" version="2.0.0">
3 <metadata type="native">
4 <annotations>
5 <token-annotation>
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <pos-annotation set="adhoc">
12 <annotator processor="p1" />
13 </pos-annotation>
14 <correction-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/spellingcorrection.foliaset.xml">
15 <annotator processor="p1" />
16 </correction-annotation>
17 <sentence-annotation>
18 <annotator processor="p1" />
19 </sentence-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 <processor xml:id="johndoe" name="johndoe" type="manual" />
24 </provenance>
25 </metadata>
26 <text xml:id="example.text">
27 <s xml:id="example.s.1">
28 <t>Watch that tree</t>
29 <w xml:id="example.s.1.w.1">
30 <t>Watch</t>
31 <pos class="verb" />
32 </w>
33 <w xml:id="example.s.1.w.2">
34 <t>that</t>
35 <pos class="determiner" />
36 </w>
37 <w xml:id="example.s.1.w.3">
38 <t>tree</t>
39 <correction xml:id="example.correction.2" class="spelling"
40 processor="p1" confidence="1.0">
41 <new>
42 <pos class="noun" />
43 </new>

(continues on next page)

64 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

44 <original>
45 <pos class="verb" />
46 </original>
47 </correction>
48 </w>
49 </s>
50 </text>
51 </FoLiA>

Error detection

See also:

The correction of an error implies the detection of an error. In some cases, detection comes without correction
and without suggestions for correction, for instance when the generation of correction suggestions is postponed
to a later processing stage. You can use Observation Annotation to mark errors.

Suggestions for correction

The <correction> element can also be used in such situations in which you want to list suggestions for
correction, but not yet commit to any single one. You may for example want to postpone this actual selection
to another module or human annotator. The output of a speller check is typically a suggestion for correction.
Recall that the actual correction is always included in the <new> tag, non-committing suggestions are included
in the <suggestion> tag. All suggestions may take an ID and may specify an annotator/processor.
Suggestions never take sets or classes by themselves, the class and set pertain to the correction as a whole,
and apply to all suggestions within. This implies that you will need multiple correction elements if you want to
make suggestions of very distinct types. The following example shows two suggestions for spelling correction:

1 <?xml version='1.0' encoding='utf-8'?>
2 <FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia"␣

↪→xml:id="page1263" version="2.0.0">
3 <metadata type="native">
4 <annotations>
5 <token-annotation>
6 <annotator processor="p1" />
7 </token-annotation>
8 <sentence-annotation>
9 <annotator processor="p1" />

10 </sentence-annotation>
11 <text-annotation>
12 <annotator processor="p1" />
13 </text-annotation>
14 <correction-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/spellingcorrection.foliaset.xml">
15 <annotator processor="spellingcorrector" />
16 </correction-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 <processor xml:id="spellingcorrector" name="spellingcorrector" />
21 </provenance>
22 </metadata>
23 <text xml:id="example.text">
24 <s xml:id="example.s.1">

(continues on next page)

4.2. Higher-order Annotation 65

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

25 <w xml:id="example.s.1.w.1">
26 <t>Watch</t>
27 </w>
28 <w xml:id="example.s.1.w.2">
29 <t>that</t>
30 </w>
31 <w xml:id="example.s.1.w.3">
32 <t>treee</t>
33 <correction xml:id="example.correction.1" class="spelling" processor=

↪→"spellingcorrector">
34 <suggestion confidence="0.8">
35 <t>tree</t>
36 </suggestion>
37 <suggestion confidence="0.2">
38 <t>three</t>
39 </suggestion>
40 </correction>
41 </w>
42 </s>
43 </text>
44 </FoLiA>

In the situation above we have a possible correction with two suggestions, none of which has been selected
yet. The actual text remains unmodified so there are no <new> or <original> tags.
When an actual correction is made, the correction element changes. It may still retain the list of suggestions.
In the following example, a human annotator named John Doe took one of the suggestions and made the
actual correction:

<w>
<correction xml:id="example.correction.1" class="spelling" processor="johndoe">

<new>
<t>tree</t>

</new>
<suggestion confidence="0.8">

<t>tree</t>
</suggestion>
<suggestion confidence="0.2">

<t>three</t>
</suggestion>
<original>

<t>treee</t>
</original>

</correction>
</w>

Structural corrections: Merges, splits and swaps

Sometimes in the context of spelling correction, one wants to merge multiple tokens into one single new
token, or the other way around; split one token into multiple new ones. The FoLiA format does not allow you
to simply create new tokens and reassign identifiers. Identifiers are by definition permanent and should never
change, as this would break backward compatibility. So such a change is therefore by definition a correction,
and one uses the <correction> element to merge and split tokens.
We will first demonstrate a merge of two tokens (on line) into one (online). The original tokens are always
retained within the <original> element. First a peek at the XML prior to merging:

66 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

<s xml:id="example.p.1.s.1">
<w xml:id="example.p.1.s.1.w.1">

<t>on</t>
</w>
<w xml:id="example.p.1.s.1.w.2">

<t>line</t>
</w>

</s>

And after merging:

<s xml:id="example.p.1.s.1">
<correction xml:id="example.p.1.s.1.c.1" class="merge">

<new>
<w xml:id="example.p.1.s.1.w.1-2">

<t>online</t>
</w>

</new>
<original>

<w xml:id="example.p.1.s.1.w.1">
<t>on</t>

</w>
<w xml:id="example.p.1.s.1.w.2">

<t>line</t>
</w>

</original>
</correction>
</s>

Note that the correction element here is a member of the sentence (<s>), rather than the word token (<w>)
as in all previous examples. The class, as always, is just a fictitious example and users can assign their own
according to their own sets.
Now we will look at a split, the reverse of the above situation. Prior to splitting, assume we have:

<s xml:id="example.p.1.s.1">
<w xml:id="example.p.1.s.1.w.1">

<t>online</t>
</w>
</s>

After splitting:

<s xml:id="example.p.1.s.1">
<correction xml:id="example.p.1.s.1.c.1" class="split">

<new>
<w xml:id="example.p.1.s.1.w.1_1">

<t>on</t>
</w>
<w xml:id="example.p.1.s.1.w.1_2">

<t>line</t>
</w>

</new>
<original>

<w xml:id="example.p.1.s.1.w.1">
<t>online</t>

</w>
</original>

(continues on next page)

4.2. Higher-order Annotation 67

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</correction>
</s>

The same principle as used for merges and splits can also be used for performing swap corrections:

<s xml:id="example.p.1.s.1">
<correction xml:id="example.p.1.s.1.c.1" class="swap">

<new>
<w xml:id="example.p.1.s.1.w.2_1">

<t>on</t>
</w>
<w xml:id="example.p.1.s.1.w.1_2">

<t>line</t>
</w>

</new>
<original>

<w xml:id="example.p.1.s.1.w.1">
<t>line</t>

</w>
<w xml:id="example.p.1.s.1.w.2">

<t>on</t>
</w>

</original>
</correction>
</s>

Note that in such a swap situation, the identifiers of the swapped tokens tokens are new. They are essentially
copies of the originals. Likewise, any token annotations you want to preserve explicitly need to be copies.

Insertions and Deletions

Insertions are words that are omitted in the original and have to be inserted in correction, while deletions are
words that are erroneously inserted in the original and have to be removed in correction. FoLiA deals with
these in a similar way to merges, splits and swaps. For deletions, the <new> element is simply empty. In the
following example the word the was duplicated and removed in correction:

<s xml:id="example.p.1.s.1">
<w xml:id="example.p.1.s.1.w.1">

<t>the</t>
</w>
<correction xml:id="example.p.1.s.1.c.1" class="duplicate">

<new/>
<original>

<w xml:id="example.p.1.s.1.w.2">
<t>the</t>

</w>
</original>

</correction>
<w xml:id="example.p.1.s.1.w.3">

<t>man</t>
</w>
</s>

For insertions, the <original> element is empty:

68 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

<s xml:id="example.p.1.s.1">
<w xml:id="example.p.1.s.1.w.1">

<t>the</t>
</w>
<correction xml:id="example.p.1.s.1.c.1" class="duplicate">

<new>
<w xml:id="example.p.1.s.1.w.1_1">

<t>old</t>
</w>

</new>
<original />

</correction>
<w xml:id="example.p.1.s.1.w.2">

<t>man</t>
</w>
</s>

Although we limited our discussion to merges, splits, insertions and deletions applied to words/tokens, they
may be applied to any other structural element just as well.

Suggestions for correction: structural changes

The earlier described suggestions for correction can be extended to merges, splits, insertions and deletions
as well. This is done by embedding the newly suggested structure in <suggestion> elements. The current
version of the structure is moved to within the scope of a <current> element.
We illustrate the splitting of online to on line as a suggestion for correction:

<s xml:id="example.p.1.s.1">
<correction xml:id="example.p.1.s.1.c.1" class="split">

<current>
<w xml:id="example.p.1.s.1.w.1">

<t>online</t>
</w>

</current>
<suggestion>

<w xml:id="example.p.1.s.1.w.1_1">
<t>on</t>

</w>
<w xml:id="example.p.1.s.1.w.1_2">

<t>line</t>
</w>

</suggestion>
</correction>
</s>

Special cases are insertions and deletions. In case of suggested insertions, the current element is empty (but
always present!), in case of deletions, the suggestion element is empty (but always present!).
For non-structural suggestions for correction, we simply have multiple correction elements if there are sugges-
tions for correction of different classes. When structural changes are proposed, however, this is not possible,
as there can be only one <current> element. The remedy here is to nest corrections, a current element may
hold a correction with its own current element, and so on.
We can use suggestions for correction on any structural level; so we can for instance embed entire sentences
or paragraphs within a suggestion. However, this quickly becomes very verbose and redundant as all the lower
levels are copied for each suggestion. Common structural changes, as we have seen, are splits and merges.
The <suggestion> element has a special additional facility to signal splits and merges, using the split and

4.2. Higher-order Annotation 69

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

merge attribute, the value of which points to the ID (or IDs, space delimited) of the elements to split or
merge with. When applied to sentences, splits and merges often coincide with an insertion of punctuation (for
a sentence split), or deletion of redundant punctuation (for a sentence merge). The following two examples
illustrate both these cases:

<p xml:id="correctionexample.p.2">
<s xml:id="correctionexample.p.2.s.1">

<w xml:id="correctionexample.p.2.s.1.w.1"><t>I</t></w>
<w xml:id="correctionexample.p.2.s.1.w.2"><t>think</t></w>
<correction xml:id="correctionexample.p.2.correction.1" class=

↪→"redundantpunctuation">
<suggestion merge="correctionexample.p.2.s.2" />
<current>

<w xml:id="correctionexample.p.2.s.1.w.3"><t>.</t></w>
</current>

</correction>
</s>
<s xml:id="correctionexample.p.2.s.2">

<w xml:id="correctionexample.p.2.s.2.w.1"><t>and</t></w>
<w xml:id="correctionexample.p.2.s.2.w.2"><t>therefore</t></w>
<w xml:id="correctionexample.p.2.s.2.w.3"><t>I</t></w>
<w xml:id="correctionexample.p.2.s.2.w.4"><t>am</t></w>
<w xml:id="correctionexample.p.2.s.2.w.5"><t>.</t></w>

</s>
</p>

<p xml:id="correctionexample.p.2">
<s xml:id="correctionexample.p.2.s.1">

<w xml:id="correctionexample.p.2.s.1.w.1"><t>I</t></w>
<w xml:id="correctionexample.p.2.s.1.w.2"><t>go</t></w>
<w xml:id="correctionexample.p.2.s.1.w.3"><t>home</t></w>
<correction xml:id="correctionexample.p.2.correction.1" class=

↪→"missingpunctuation">
<suggestion split="correctionexample.p.2.s.1">

<w xml:id="correctionexample.p.2.s.1.w.3a"><t>.</t></w>
</suggestion>
<current />

</correction>
<w xml:id="correctionexample.p.2.s.1.w.4">
<t>you</t>
<correction xml:id="correctionexample.p.2.correction.2" class=

↪→"capitalizationerror">
<suggestion>
<t>You</t>

</suggestion>
</correction>

</w>
<w xml:id="correctionexample.p.2.s.1.w.5"><t>welcome</t></w>
<w xml:id="correctionexample.p.2.s.1.w.6"><t>me</t></w>
<w xml:id="correctionexample.p.2.s.1.w.7"><t>.</t></w>

</s>
</p>

In the second example, we also add an additional non-structural suggestion for correction, suggesting to
capitalize the first word of what is suggested to become a new sentence.

70 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.2.2 Gap Annotation

Sometimes there are parts of a document you want to skip and not annotate at all, but include as is. This
is where gap annotation comes in, the user-defined set may indicate the kind of gap. Common omissions in
books are for example front-matter and back-matter, i.e. the cover.

Specification

Structure Element

Annotation Category Higher-order Annotation
Declaration <gap-annotation set="..."> (note: set is optional for this annotation type; if

you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <gap>

API Class Gap (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

4.2. Higher-order Annotation 71

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Gap.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <content> (Raw Content), <desc> (De-
scription Annotation), <metric> (Metric Annotation), <part> (Part Annotation)

Valid Context <div> (Division Annotation), <event> (Event Annotation), <head> (Head An-
notation), <p> (Paragraph Annotation), <quote> (Quote Annotation), <s> (Sentence An-
notation), <term> (Term Annotation), <utt> (Utterance Annotation)

Text markup Element

Element <t-gap>

API Class TextMarkupGap (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.

72 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TextMarkupGap.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context

Explanation

Sometimes there are parts of a document you want to skip and not annotate, but include as is. For this
purpose the <gap> element should be used. Gaps may have a particular class indicating the kind of gap it is,
defined by a user-defined set. Common omissions are for example front-matter and back-matter, text that is
illegible/inaudible or in a foreign language. Again, the semantics depend on your set.
Although a gap skips over content, you may still want to explicitly add the raw content, this is done with the
<content> element (see Raw Content). As this concerns raw content, it can not be annotated any further
and we use XML CDATA type here to include it verbatim.
The following example shows the the use of <gap>:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <gap-annotation set="adhoc">
12 <annotator processor="p1" />
13 </gap-annotation>
14 <rawcontent-annotation>
15 <annotator processor="p1" />
16 </rawcontent-annotation>
17 <description-annotation>
18 <annotator processor="p1" />

(continues on next page)

4.2. Higher-order Annotation 73

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

19 </description-annotation>
20 <paragraph-annotation>
21 <annotator processor="p1" />
22 </paragraph-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <gap class="frontmatter">
30 <desc>This is the cover of the book</desc>
31 <content>
32 <![CDATA[
33

34 SHOW WHITE AND THE SEVEN DWARFS
35

36

37 by the Brothers Grimm
38

39 first edition
40

41

42 Copyright(c) blah blah
43]]>
44 </content>
45 </gap>
46 <div xml:id="example.div.1" class="chapter" n="1">
47 <t>In the <t-gap class="illegible" /> there was a princess...</t>
48 </div>
49 </text>
50 </FoLiA>

The gap element comes in two flavours, there is not just the aforementioned structural elements but there is
also a text markup element (see Text Markup Annotation). This is the text markup element <t-gap> and it
offers a more fine-grained variant for use in untokenised text. It indicates a gap in the textual content and is
also shown in the above example. Either text is not available or there is a deliberate blank for, for example,
fill-in exercises. It is recommended to provide a textual value when possible, but this is not required.
If you find that you want to mark your whole text content as being a <t-gap>, then this is a sure sign you
should use the structural element <gap> instead.

Note: Both elements are the same annotation type so share the same declaration.

Text Redundancy

In cases of text redundancy (see Text Annotation), the <t-gap> element may take an ID reference attribute
that refers to a gap element, as shown in the following example:

<s>
<t>to <t-gap id="gap.1" class="fillin">be</t-gap> or not to be</t>
<w><t>to</t></w>
<gap xml:id="gap.1" class="fillin"><content>be</content></gap>
<w><t>or</t></w>

(continues on next page)

74 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

<w><t>not</t></w>
<w><t>to</t></w>
<w><t>be</t></w>

</s>

4.2.3 Relation Annotation

FoLiA provides a facility to relate arbitrary parts of your document with other parts of your document, or
even with parts of other FoLiA documents or external resources, even in other formats. It thus allows linking
resources together. Within this context, the xref element is used to refer to the linked FoLiA elements.

Specification

Annotation Category Higher-order Annotation
Declaration <relation-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Revised since v0.8, renamed from alignment in v2.0
Element <relation>

API Class Relation (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be

4.2. Higher-order Annotation 75

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Relation.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation)

Valid Context <chunk> (Chunking), <coreferencechain> (Coreference Annotation),
<coreferencelink> (Coreference Annotation), <def> (Definition Annotation),
<dependency> (Dependency Annotation), <div> (Division Annotation), <entity>
(Entity Annotation), <entry> (Entry Annotation), <event> (Event Annotation), <ex>
(Example Annotation), <figure> (Figure Annotation), <head> (Head Annotation),
<hiddenw> (Hidden Token Annotation),
 (Linebreak), <list> (List Annotation),
<modality> (Modality Annotation), <morpheme> (Morphological Annotation), <note>
(Note Annotation), <observation> (Observation Annotation), <p> (Paragraph Annota-
tion), <part> (Part Annotation), <phoneme> (Phonological Annotation), <predicate>
(Predicate Annotation), <quote> (Quote Annotation), <ref> (Reference Annotation),
<semrole> (Semantic Role Annotation), <s> (Sentence Annotation), <sentiment>
(Sentiment Annotation), <spanrelation> (Span Relation Annotation), <statement>
(Statement Annotation), <str> (String Annotation), <su> (Syntactic Annotation),
<table> (Table Annotation), <term> (Term Annotation), <timesegment> (Time Segmen-
tation), <utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token
Annotation)

Explanation

Note: In versions of FoLiA prior to 2.0, this annotation type was called alignments

FoLiA provides a facility to link parts of your document with other parts of your document, or even with parts
of other FoLiA documents or external resources. These are called relations and are implemented using the
<relation> element. Within this context, the <xref> element is used to cross-link to the related FoLiA
elements.
Consider the two following aligned sentences from excerpts of two separate FoLiA documents in different
languages:

76 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

<s xml:id="example-english.p.1.s.1">
<t>The Dalai Lama greeted him.</t>
<relation class="french-translation" xlink:href="doc-french.xml"
xlink:type="simple">
<xref id="doc-french.p.1.s.1" t="Le Dalai Lama le saluait."
type="s" />

</relation>
</s>

<s xml:id="example-french.p.1.s.1">
<t>Le Dalai Lama le saluait.</t>
<relation class="english-translation" xlink:href="doc-english.xml"
xlink:type="simple">
<xref id="doc-english.p.1.s.1" t="The Dalai Lama greeted him."
type="s" />

</relation>
<relation class="dutch-translation" xlink:href="doc-dutch.xml"

xlink:type="simple">
<xref id="doc-dutch.p.1.s.1" t="De Dalai Lama begroette hem."
type="s" />

</relation>
</s>

It is the job of the <relation> element to point to the relevant resource, whereas the <xref> element points
to a specific point inside the referenced resource. The xlink:href attribute is used to link to the target
document, if any. If the relation is within the same document then it should simply be omitted. The type
attribute on <xref> specifies the type of element the relation points too, i.e. its value is equal to the tagname
it points to. The t attribute to the <xref> element is merely optional and this overhead is added simply to
facilitate the job of limited FoLiA parsers and provides a quick reference to the target text for both parsers
and human users.
Although the above example has a single relation reference (<xref>), it is not forbidden to specify multiple
references within the <relation> block, effectively referring to a span of multiple elements at the target.
By default, relations are between FoLiA documents. It is, however, also possible to point to resources in
different formats. This has to be made explicit using the format attribute on the <relation> element. The
value of the format attribute is a MIME type and defaults to text/folia+xml (naming follows RFC 3032).
In the following example align a section (<div>) with the original HTML document from which the FoLiA
document is arrived, and where the section is expressed with an HTML anchor (<a>) tag.

<div class="section">
<t>lorum ipsum etc.</t>
<relation class="original" xlink:href="http://somewhere/original.html"

xlink:type="simple" format="text/html">
<xref id="section2" type="a" />

</relation>
</div>

See also:

For more complex many-to-many relations, see Span Relation Annotation, an extension of the current anno-
tation type.

Translations

relation Annotation and Span Relation Annotation are an excellent tool for specifying translations. For
situations in which relations seem overkill, a simple multi-document mechanism is available. This mechanism
is based purely on convention: It assumes that structural elements that are translations simply share the

4.2. Higher-order Annotation 77

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

same ID. This approach is quite feasible when used on higher-level structural elements, such as divisions,
paragraphs, events or entries.

Example

The following example shows Entity Annotation with relations to Wikipedia.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" xmlns:xlink="http://www.w3.org/1999/xlink"␣

↪→version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl" format="text/turtle">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <entity-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/namedentities.foliaset.ttl" format="text/turtle">
18 <annotator processor="p1" />
19 </entity-annotation>
20 <relation-annotation set="adhoc">
21 <annotator processor="p1" />
22 </relation-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <p xml:id="example.p.1">
30 <s xml:id="example.p.1.s.1">
31 <t>The Dalai Lama currently lives in Dharamsala in India.</t>
32 <w xml:id="example.p.1.s.1.w.1" class="WORD">
33 <t>The</t>
34 </w>
35 <w xml:id="example.p.1.s.1.w.2" class="WORD">
36 <t>Dalai</t>
37 </w>
38 <w xml:id="example.p.1.s.1.w.3" class="WORD">
39 <t>Lama</t>
40 </w>
41 <w xml:id="example.p.1.s.1.w.4" class="WORD">
42 <t>currently</t>
43 </w>
44 <w xml:id="example.p.1.s.1.w.5" class="WORD">
45 <t>lives</t>
46 </w>
47 <w xml:id="example.p.1.s.1.w.6" class="WORD">

(continues on next page)

78 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

48 <t>in</t>
49 </w>
50 <w xml:id="example.p.1.s.1.w.7" class="WORD">
51 <t>Dharamsala</t>
52 </w>
53 <w xml:id="example.p.1.s.1.w.8" class="WORD">
54 <t>in</t>
55 </w>
56 <w xml:id="example.p.1.s.1.w.9" class="WORD" space="no">
57 <t>India</t>
58 </w>
59 <w xml:id="example.p.1.s.1.w.10" class="PUNCTUATION">
60 <t>.</t>
61 </w>
62 <entities>
63 <entity xml:id="example.p.1.s.1.entity.1" class="per">
64 <relation class="wikipedia" xlink:href="https://en.wikipedia.org/

↪→wiki/Dalai_Lama" xlink:type="simple" format="text/html" />
65 <wref id="example.p.1.s.1.w.2" t="Dalai" />
66 <wref id="example.p.1.s.1.w.3" t="Lama" />
67 </entity>
68 <entity xml:id="example.p.1.s.1.entity.2" class="loc.city">
69 <relation class="wikipedia" xlink:href="https://en.wikipedia.org/

↪→wiki/Dharamsala" xlink:type="simple" format="text/html" />
70 <wref id="example.p.1.s.1.w.7" t="Dharamsala" />
71 </entity>
72 <entity xml:id="example.p.1.s.1.entity.3" class="loc.country">
73 <relation class="wikipedia" xlink:href="https://en.wikipedia.org/

↪→wiki/India" xlink:type="simple" format="text/html" />
74 <wref id="example.p.1.s.1.w.9" t="India" />
75 </entity>
76 </entities>
77 </s>
78 </p>
79 </text>
80 </FoLiA>

The following example shows relations within strings in a document (See also String Annotation):

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <paragraph-annotation>
9 <annotator processor="p1" />

10 </paragraph-annotation>
11 <string-annotation>
12 <annotator processor="p1" />
13 </string-annotation>
14 <relation-annotation>
15 <annotator processor="p1" />
16 </relation-annotation>
17 </annotations>

(continues on next page)

4.2. Higher-order Annotation 79

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <p xml:id="example.p.1">
24 <t><t-str id="example.p.1.str.1">Hello.</t-str> This is a sentence. Bye!</t>
25 <t class="ocroutput"><t-str id="example.p.1.str.2">Hell0</t-str> Th1s iz a␣

↪→sentence, Bye1</t>
26

27 <str xml:id="example.p.1.str.1">
28 <t offset="0">Hello.</t>
29 <relation>
30 <xref id="example.p.1.str.2" type="str" />
31 </relation>
32 </str>
33

34 <str xml:id="example.p.1.str.2">
35 <t class="ocroutput" offset="0">Hell0</t>
36 <relation>
37 <xref id="example.p.1.str.1" type="str" />
38 </relation>
39 </str>
40 </p>
41 </text>
42 </FoLiA>

4.2.4 Span Relation Annotation

Span relations are a stand-off extension of relation annotation that allows for more complex relations, such
as word alignments that include many-to-one, one-to-many or many-to-many alignments. One of its uses is
in the alignment of multiple translations of (parts) of a text.

Specification

Annotation Category Higher-order Annotation
Declaration <spanrelation-annotation set="..."> (note: set is optional for this annota-

tion type; if you declare this annotation type to be setless you can not assign classes)
Version History since v0.8, renamed from complexalignment in v2.0
Element <spanrelation>

API Class SpanRelation (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

80 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.SpanRelation.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <spanrelations> (Span Relation Annotation)

Explanation & Examples

Please ensure you are familiar with Relation Annotation first, as this is an extension for that annotation type.

Note: In versions of FoLiA prior to 2.0, this annotation type was called complex alignments

Under span relations we count more complex relations such as many-to-one, one-to-many and many-to-many
relations between arbitrary elements. The element <spanrelation> behaves similarly to a span annotation
element, operating in a stand-off fashion. This element groups <relation> elements together, effectively

4.2. Higher-order Annotation 81

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

creating a many-to-many relation. The following example illustrates an example similar to the one above. All
this takes place within the <spanrelations> annotation layer.
Consider the following example:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" xmlns:xlink="http://www.w3.org/1999/xlink"␣

↪→version="2.0" xml:id="example-english">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <relation-annotation set="ad-hoc-translation-set">
15 <annotator processor="p1" />
16 </relation-annotation>
17 <spanrelation-annotation>
18 <annotator processor="p1" />
19 </spanrelation-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example-english.text">
26 <s xml:id="example-english.p.1.s.1">
27 <t>The Dalai Lama greeted him.</t>
28 <w xml:id="example-english.p.1.s.1.w.1"><t>The</t></w>
29 <w xml:id="example-english.p.1.s.1.w.2"><t>Dalai</t></w>
30 <w xml:id="example-english.p.1.s.1.w.3"><t>Lama</t></w>
31 <w xml:id="example-english.p.1.s.1.w.4"><t>greeted</t></w>
32 <w xml:id="example-english.p.1.s.1.w.5" space="no"><t>him</t></w>
33 <w xml:id="example-english.p.1.s.1.w.6"><t>.</t></w>
34 <spanrelations>
35 <spanrelation>
36 <relation class="original">
37 <xref id="example-english.p.1.s.1.w.2" t="Dalai" type="w"/>
38 <xref id="example-english.p.1.s.1.w.3" t="Lama" type="w"/>
39 </relation>
40 <relation class="french" xlink:href="doc-french.xml" xlink:type="simple">
41 <xref id="example-french.p.1.s.1.w.2" t="Dalai" type="w"/>
42 <xref id="example-french.p.1.s.1.w.3" t="Lama" type="w"/>
43 </relation>
44 </spanrelation>
45 </spanrelations>
46 </s>
47 </text>
48 </FoLiA>

Here <xref> is used instead of the <wref> element we know from Span Annotation. as despite similarities
relations are technically not exactly span annotation elements. You can in fact relate to anything that can
carry an ID, within the same document and across multiple documents. Moreover, the notion of relations is

82 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

not limited to just words, and it can be used for more than specifying translations.
The first <relation> element has no xlink reference, and therefore simply refers to the current document.
The second relation element links to the foreign document. This notation is powerful as it allows you to
specify a large number of relations in a concise matter. Consider the next example in which we added German
and Italian, effectively specifying what can be perceived as 16 relationships over four different documents:

<s xml:id="example-english.p.1.s.1">
<t>The Dalai Lama greeted him.</t>
<w xml:id="example-english.p.1.s.1.w.1"><t>The</t></w>
<w xml:id="example-english.p.1.s.1.w.2"><t>Dalai</t></w>
<w xml:id="example-english.p.1.s.1.w.3"><t>Lama</t></w>
<w xml:id="example-english.p.1.s.1.w.4"><t>greeted</t></w>
<w xml:id="example-english.p.1.s.1.w.5"><t>him</t></w>
<w xml:id="example-english.p.1.s.1.w.6"><t>.</t></w>
<spanrelations>
<spanrelation>
<relation class="english-translation">
<xref id="example-english.p.1.s.1.w.2" t="Dalai" type="w"/>
<xref id="example-english.p.1.s.1.w.3" t="Lama" type="w"/>

</relation>
<relation class="french-translation"
xlink:href="doc-french.xml"
xlink:type="simple">
<xref id="example-french.p.1.s.1.w.2" t="Dalai" type="w"/>
<xref id="example-french.p.1.s.1.w.3" t="Lama" type="w"/>

</relation>
<relation class="german-translation"
xlink:href="doc-german.xml"
xlink:type="simple">
<xref id="example-german.p.1.s.1.w.2" t="Dalai" type="w"/>
<xref id="example-german.p.1.s.1.w.3" t="Lama" type="w"/>

</relation>
<relation class="italian-translation"
xlink:href="doc-italian.xml"
xlink:type="simple">
<xref id="example-italian.p.1.s.1.w.2" t="Dalai" type="w"/>
<xref id="example-italian.p.1.s.1.w.3" t="Lama" type="w"/>

</relation>
</spanrelation>

</spanrelations>
</s>

Now you can even envision a FoLiA document that does not hold actual content, but acts merely as a
document containing all relations between for example different translations of the document. Allowing for
all relations to be contained in a single document rather than having to be made explicit in each language
version.
The <spanrelation> element itself may also take a set, which is independent from the alignment set. They
therefore also have two separate declarations.

4.2.5 Metric Annotation

Metric Annotation is a form of higher-order annotation that allows annotation of some kind of measurement.
The type of measurement is defined by the class, which in turn is defined by the set as always. The metric
element has a value attribute that stores the actual measurement, the value is often numeric but this needs
not be the case.

4.2. Higher-order Annotation 83

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Specification

Annotation Category Higher-order Annotation
Declaration <metric-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History since v0.9
Element <metric>

API Class Metric (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing

84 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Metric.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation)
Valid Context <chunk> (Chunking), <coreferencechain> (Coreference Annotation),

<coreferencelink> (Coreference Annotation), <correction> (Correction Annotation),
<current> (Correction Annotation), <def> (Definition Annotation), <dependency>
(Dependency Annotation), <div> (Division Annotation), <domain> (Domain/topic Anno-
tation), <entity> (Entity Annotation), <entry> (Entry Annotation), <errordetection>
(Error Detection Annotation (DEPRECATED)), <event> (Event Annotation), <ex> (Exam-
ple Annotation), <figure> (Figure Annotation), <gap> (Gap Annotation), <head> (Head
Annotation), <hiddenw> (Hidden Token Annotation), <lang> (Language Annotation),
<lemma> (Lemmatisation),
 (Linebreak), <list> (List Annotation), <modality>
(Modality Annotation), <morpheme> (Morphological Annotation), <new> (Correction
Annotation), <note> (Note Annotation), <observation> (Observation Annotation),
<original> (Correction Annotation), <p> (Paragraph Annotation), <part> (Part An-
notation), <phoneme> (Phonological Annotation), <pos> (Part-of-Speech Annotation),
<predicate> (Predicate Annotation), <quote> (Quote Annotation), <ref> (Reference
Annotation), <relation> (Relation Annotation), <semrole> (Semantic Role Annotation),
<sense> (Sense Annotation), <s> (Sentence Annotation), <sentiment> (Sentiment
Annotation), <spanrelation> (Span Relation Annotation), <statement> (Statement
Annotation), <str> (String Annotation), <subjectivity> (Subjectivity Annotation
(DEPRECATED)), <suggestion> (Correction Annotation), <su> (Syntactic Annotation),
<table> (Table Annotation), <term> (Term Annotation), <timesegment> (Time Segmen-
tation), <utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token
Annotation)

Feature subsets (extra attributes)

• value

Explanation

The <metric> element allows annotation of some kind of measurement. The type of measurement is defined
by the class, which in turn is user-defined by the set as always. The metric element has a value attribute that
stores the actual measurement, the value is often numeric but this needs not be the case. It is a higher-level
annotation element that may be used with any kind of annotation.
An example of measurements associated with a word/token:

<w xml:id="example.p.1.s.1.w.2">
<t>boot</t>
<metric class="charlength" value="4" />
<metric class="frequency" value="0.00232" />

</w>

The next example shows measurements associated with a span annotation element, in this case to add
geolocation information:

<entity class="location">
<wref id="w3" t="New" />
<wref id="w4" t="York" />
<metric class="latitude" value="40.71274" />
<metric class="longitude" value="-74.005974" />

</entity>

4.2. Higher-order Annotation 85

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

The next example demonstrates a full FoLiA document with metric annotation on a Figure, but it may be
more appropriate to use Submetadata for this instead:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <head-annotation>
12 <annotator processor="p1" />
13 </head-annotation>
14 <figure-annotation>
15 <annotator processor="p1" />
16 </figure-annotation>
17 <metric-annotation set="adhoc-figure">
18 <annotator processor="p1" />
19 </metric-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <div xml:id="example.div.1" class="chapter" n="1">
27 <head>
28 <t>Frits Philips</t>
29 </head>
30 <figure xml:id="example.figure.1" n="1" src="https://upload.wikimedia.org/

↪→wikipedia/commons/f/f8/Standbeeld_Frits_Philips.jpg">
31 <metric class="photographer" value="Robert de Greef" />
32 <metric class="city" value="Eindhoven" />
33 <metric class="depicted" value="Frits Philips" />
34 <metric class="license" value="CC-BY-SA 3.0" />
35 <caption><t>Standbeeld van Frits Philips in Eindhoven</t></caption>
36 </figure>
37 </div>
38 </text>
39 </FoLiA>

4.2.6 String Annotation

This is a form of higher-order annotation for selecting an arbitrary substring of a text, even untokenised, and
allows further forms of higher-order annotation on the substring. It is also tied to a form of text markup
annotation.

Specification

Annotation Category Higher-order Annotation
Declaration <string-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)

86 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Version History since v0.9.1
Element <str>

API Class String (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <correction> (Correction Annotation),
<desc> (Description Annotation), <metric> (Metric Annotation), <ph> (Phonetic Annota-
tion/Content), <relation> (Relation Annotation), <t> (Text Annotation)

4.2. Higher-order Annotation 87

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.String.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Valid Context <current> (Correction Annotation), <def> (Definition Annotation), <entry>
(Entry Annotation), <event> (Event Annotation), <ex> (Example Annotation), <figure>
(Figure Annotation), <head> (Head Annotation), <hiddenw> (Hidden Token Annotation),
<list> (List Annotation), <morpheme> (Morphological Annotation), <new> (Correction
Annotation), <note> (Note Annotation), <original> (Correction Annotation), <p> (Para-
graph Annotation), <phoneme> (Phonological Annotation), <quote> (Quote Annotation),
<ref> (Reference Annotation), <s> (Sentence Annotation), <suggestion> (Correction An-
notation), <term> (Term Annotation), <utt> (Utterance Annotation), <w> (Token Anno-
tation)

Explanation

The <str> element is available in FoLiA to allow annotations on untokenised substrings. It is a higher-order
annotation element that refers to a substring of the text-content (<t>) element on the same level, but is
specified outside from it.
Explicitly denoting substrings in this fashion is needed when you want to associate further annotations with
a substring. Consider the following example:

<p xml:id="example.p.1">
<t>Hello. This is a sentence. Bye!</t>
<str xml:id="example.p.1.str.1">

<t offset="0">Hello</t>
<desc>This is a word of greeting</desc>

</str>
</p>

In substrings, using an offset attribute on the text-content element enables substrings to be properly positioned
with respect to their parent text.
The <str> element has a text markup (Text Markup Annotation) counterpart called <t-str>. Both share
the same declaration. The text markup variant can be used in the scope of the text content itself and may
be more intuitive, but it is also less flexible, as it does not allow further annotations in its scope and can not
be used when substrings are overlapping, unlike <str>. Consider the following example:

<p xml:id="example.p.1">
<t><t-str id="example.p.1.str.1">Hello</t-str>. This is a sentence. Bye!</t>
<str xml:id="example.p.1.str.1">

<t offset="0">Hello</t>
<desc>This is a word of greeting</desc>

</str>
</p>

In the above example, the id parameter (distinct from xml:id!) on <t-str> is a reference to the <str>
element, showing how the two elements can be used in combination.
One of the features of <str> is that you can put Inline Annotation in its scope, so you can associate e.g.
PoS tags and lemmas with substrings in special cases where you might need to do this. Do note that this is
NOT a substitute or alternative for proper tokenisation (Token Annotation), nor Morphological Annotation!
String elements are a form of higher-order annotation, they are similar to structure annotation but carry
several distinct properties. Unlike structure elements, substring order does not matter and substrings may
overlap. The difference between Token Annotation (<w>) and string annotation (<str>) has to be clearly
understood, the former refers to actual tokens and supports further token annotation, the latter to untokenised
or differently tokenised substrings.The
Of course, the <str> elements themselves may carry a class, associated with a user-defined set.

88 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Textclasses (advanced)

If you are familiar with Text classes (advanced), then it is good to know that this principle of course extends
to within substrings as well. Consider the following example with three text layers, from each of them the
same substring has been extracted:

<p xml:id="example.p.1">
<t>Hello. This is a sentence. Bye!</t>
<t class="normalised">Hello. This iz a sentence. Bye!</t>
<t class="ocroutput">Hell0 Th1s iz a sentence, Bye1</t>

<str xml:id="example.p.1.str.1">
<t class="ocroutput" offset="0">Hell0</t>

</str>

<str xml:id="example.p.1.str.2">
<t class="normalised" offset="0">Hello.</t>

</str>

<str xml:id="example.p.1.str.3">
<t offset="0">Hello.</t>

</str>
</p>

Instead of three separate substrings, we can also opt for a single one. Which solution is right for you depends
on your own use case:

<p xml:id="example.p.1">
<t>Hello. This is a sentence. Bye!</t>
<t class="normalised">Hello. This iz a sentence. Bye!</t>
<t class="ocroutput">Hell0 Th1s iz a sentence, Bye1</t>

<str xml:id="example.p.1.str.1">
<t class="ocroutput" offset="0">Hell0</t>
<t class="normalised" offset="0">Hello</t>
<t offset="0">Hello.</t>

</str>
</p>

Or, if you do want separate strings but you also want to make the relation between them very explicit, then
you can resort to Relation Annotation as shown in the next example:

<p xml:id="example.p.1">
<t>Hello. This is a sentence. Bye!</t>
<t class="ocroutput">Hell0 Th1s iz a sentence, Bye1</t>

<str xml:id="example.p.1.str.1">
<t class="ocroutput" offset="0">Hell0</t>
<alignment>

<aref id="example.p.1.str.2" type="str" />
</alignment>

</str>

<str xml:id="example.p.1.str.2">
<t offset="0">Hello.</t>
<alignment>

<aref id="example.p.1.str.1" type="str" />
</alignment>

(continues on next page)

4.2. Higher-order Annotation 89

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</str>
</p>

The <str> element is powerful when combined with alignments, as this allows the user to relate multiple
alternative (pseudo-)tokenisations. This is also the limit as to what you can do with differing tokenisations in
FoLiA, as FoLiA only supports one authoritative tokenisation.

Example

The following examples combines various aspects discussed in this section:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <paragraph-annotation>
9 <annotator processor="p1" />

10 </paragraph-annotation>
11 <string-annotation>
12 <annotator processor="p1" />
13 </string-annotation>
14 <relation-annotation>
15 <annotator processor="p1" />
16 </relation-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <p xml:id="example.p.1">
24 <t><t-str id="example.p.1.str.1">Hello.</t-str> This is a sentence. Bye!</t>
25 <t class="ocroutput"><t-str id="example.p.1.str.2">Hell0</t-str> Th1s iz a␣

↪→sentence, Bye1</t>
26

27 <str xml:id="example.p.1.str.1">
28 <t offset="0">Hello.</t>
29 <relation>
30 <xref id="example.p.1.str.2" type="str" />
31 </relation>
32 </str>
33

34 <str xml:id="example.p.1.str.2">
35 <t class="ocroutput" offset="0">Hell0</t>
36 <relation>
37 <xref id="example.p.1.str.1" type="str" />
38 </relation>
39 </str>
40 </p>
41 </text>
42 </FoLiA>

90 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.2.7 Alternative Annotation

This form of higher-order annotation encapsulates alternative annotations, i.e. annotations that are posed as
an alternative option rather than the authoratitive chosen annotation

Specification

Annotation Category Higher-order Annotation
Declaration <alternative-annotation> *(note: there is never a set associated with this

annotation type)
Version History Since the beginning, may carry set and classes since v2.0
Element <alt>

API Class Alternative (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing

4.2. Higher-order Annotation 91

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Alternative.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <correction> (Correction Annota-
tion), <desc> (Description Annotation), <morphology> (Morphological Annotation),
<phonology> (Phonological Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <entry> (Entry
Annotation), <event> (Event Annotation), <ex> (Example Annotation), <figure> (Figure
Annotation), <head> (Head Annotation), <hiddenw> (Hidden Token Annotation),

(Linebreak), <list> (List Annotation), <morpheme> (Morphological Annotation), <note>
(Note Annotation), <p> (Paragraph Annotation), <part> (Part Annotation), <phoneme>
(Phonological Annotation), <quote> (Quote Annotation), <ref> (Reference Annotation),
<s> (Sentence Annotation), <table> (Table Annotation), <term> (Term Annotation),
<utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annota-
tion)

Element <altlayers>

API Class AlternativeLayers (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

92 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.AlternativeLayers.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation)
Valid Context <def> (Definition Annotation), <div> (Division Annotation), <entry> (Entry

Annotation), <event> (Event Annotation), <ex> (Example Annotation), <figure> (Figure
Annotation), <head> (Head Annotation), <hiddenw> (Hidden Token Annotation),

(Linebreak), <list> (List Annotation), <morpheme> (Morphological Annotation), <note>
(Note Annotation), <p> (Paragraph Annotation), <part> (Part Annotation), <phoneme>
(Phonological Annotation), <quote> (Quote Annotation), <ref> (Reference Annotation),
<s> (Sentence Annotation), <table> (Table Annotation), <term> (Term Annotation),
<utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annota-
tion)

Introduction

The FoLiA format does not just allow for a single authoritative annotation per token; it allows the representa-
tion of alternative annotations. There is a specific form for Inline Annotation and a form for Span Annotation;
both share the same declaration <alternative-annotation> with which a set may be associated.

Alternative Inline Annotation

Alternative inline annotations are grouped within one or more <alt> elements. If multiple annotations are
grouped together under the same <alt> element, then they are deemed dependent and form a single set of
alternatives.
Each alternative preferably is given a unique identifier. In the following example we see the Dutch word “bank”
in the sense of a sofa, alternatively we see two alternative annotations with a different sense and domain.

<w xml:id="example.p.1.s.1.w.1">
<t>bank</t>
<domain class="furniture" />
<sense class="r_n-5918" confidence="1.0">
<desc>furniture</desc>

</sense>
<alt xml:id="example.p.1.s.1.w.1.alt.1">

<domain class="finance" />
<sense class="r_n-5919" confidence="0.6">

<desc>financial institution</desc>
</sense>

</alt>
<alt xml:id="example.p.1.s.1.w.1.alt.2">

<domain class="geology" />
<sense class="r_n-5920" confidence="0.1">

<desc>river bank</desc>
</sense>

(continues on next page)

4.2. Higher-order Annotation 93

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</alt>
</w>

Sometimes, an alternative is concerned only with a portion of the annotations. By default, annotations not
mentioned are applicable to the alternative as well, unless the alternative is set as being exclusive. Consider
the following expanded example in which we added a part-of-speech tag and a lemma.

<w xml:id="example.p.1.s.1.w.1">
<t>bank</t>
<domain class="furniture" />
<sense class="r_n-5918" confidence="1.0">
<desc>furniture</desc>

</sense>
<pos class="n" />
<lemma class="bank" />
<alt xml:id="example.p.1.s.1.w.1.alt.1">

<domain class="finance" />
<sense class="r_n-5919" confidence="0.6">

<desc>financial institution</desc>
</sense>

</alt>
<alt xml:id="example.p.1.s.1.w.1.alt.2">

<domain class="geology" />
<sense class="r_n-5920" confidence="0.1">

<desc>river bank</desc>
</sense>

</alt>
<alt xml:id="example.p.1.s.1.w.1.alt.2" exclusive="yes">

<t>bank</t>
<domain class="navigation" />
<sense class="r_n-1234">

<desc>to turn</desc>
</sense>
<pos class="v" />
<lemma class="bank" />

</alt>
</w>

The first two alternatives are inclusive, which is the default. This means that the pos tag n and the lemma
bank apply to them as well. The last alternative is set as exclusive, using the exclusive attribute. It has
been given a different pos tag and the lemma and even the text content has necessarily been repeated even
though it is equal to the higher-level annotation, otherwise there would be no lemma nor text associated with
the exclusive alternative.
Alternatives can be used as a great way of postponing actual annotation, due to their non-authoritative
nature. When used in this way, they can be regarded as options. They can be used even when there are no
authoritative annotations of the type. Consider the following example in which domain and sense annotations
are presented as alternatives and there is no authoritative annotation of these types whatsoever:

<w xml:id="example.p.1.s.1.w.1">
<t>bank</t>
<alt xml:id="example.p.1.s.1.w.1.alt.1">

<domain class="finance" />
<sense class="r_n-5919" confidence="0.6">

<desc>financial institution</desc>
</sense>

</alt>
(continues on next page)

94 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

<alt xml:id="example.p.1.s.1.w.1.alt.2">
<domain class="geology" />
<sense class="r_n-5920" confidence="0.1">

<desc>river bank</desc>
</sense>

</alt>
</w>

Alternative Span Annotation

With inline annotations one can specify an unbounded number of alternative annotations. This functionality
is available for Span Annotation as well, but due to the different nature of span annotations this happens in
a slightly different way.
Where we used <alt> for token annotations, we now use <altlayers> for span annotations. Under this
element several alternative layers can be presented. Analogous to <alt>, any layers grouped together are as-
sumed to be somehow dependent. Multiple <altlayers> can be added to introduce independent alternatives.
Each alternative may be associated with a unique identifier.
Below is an example of a sentence that is chunked in two ways:

<s xml:id="example.p.1.s.1">
<t>The Dalai Lama greeted him.</t>
<w xml:id="example.p.1.s.1.w.1"><t>The</t></w>
<w xml:id="example.p.1.s.1.w.2"><t>Dalai</t></w>
<w xml:id="example.p.1.s.1.w.3"><t>Lama</t></w>
<w xml:id="example.p.1.s.1.w.4"><t>greeted</t></w>
<w xml:id="example.p.1.s.1.w.5"><t>him</t></w>
<w xml:id="example.p.1.s.1.w.6"><t>.</t></w>
<chunking>
<chunk xml:id="example.p.1.s.1.chunk.1">

<wref id="example.p.1.s.1.w.1" t="The" />
<wref id="example.p.1.s.1.w.2" t="Dalai" />
<wref id="example.p.1.s.1.w.3" t="Lama" />

</chunk>
<chunk xml:id="example.p.1.s.1.chunk.2">

<wref id="example.p.1.s.1.w.4" t="greeted" />
</chunk>
<chunk xml:id="example.p.1.s.1.chunk.3">

<wref id="example.p.1.s.1.w.5" t="him" />
<wref id="example.p.1.s.1.w.6" t="." />

</chunk>
</chunking>
<altlayers xml:id="example.p.1.s.1.alt.1">

<chunking>
<chunk xml:id="example.p.1.s.1.alt.1.chunk.1" confidence="0.001">

<wref id="example.p.1.s.1.w.1" t="The" />
<wref id="example.p.1.s.1.w.2" t="Dalai" />

</chunk>
<chunk xml:id="example.p.1.s.1.alt.1.chunk.2" confidence="0.001">

<wref id="example.p.1.s.1.w.2" t="Lama" />
<wref id="example.p.1.s.1.w.4" t="greeted" />

</chunk>
<chunk xml:id="example.p.1.s.1.alt.1.chunk.3" confidence="0.001">

<wref id="example.p.1.s.1.w.5" t="him" />
<wref id="example.p.1.s.1.w.6" t="." />

(continues on next page)

4.2. Higher-order Annotation 95

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</chunk>
</chunking>

</altlayers>
</s>

The support for alternatives and the fact that multiple layers (including those of different types) cannot be
nested in a single inline structure, should make clear why FoLiA uses a stand-off notation alongside an inline
notation.

4.2.8 Comment Annotation

This is a form of higher-order annotation that allows you to associate comments with almost all other
annotation elements

Specification

Annotation Category Higher-order Annotation
Declaration <comment-annotation> *(note: there is never a set associated with this annotation

type)
Version History Since v1.3
Element <comment>

API Class Comment (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing

96 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Comment.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation)
Valid Context <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),

<chunk> (Chunking), <chunking> (Chunking), <comment> (Comment Annota-
tion), <content> (Raw Content), <coreferencechain> (Coreference Annotation),
<coreferences> (Coreference Annotation), <coreferencelink> (Coreference Annota-
tion), <correction> (Correction Annotation), <current> (Correction Annotation), <def>
(Definition Annotation), <dependencies> (Dependency Annotation), <dependency> (De-
pendency Annotation), <desc> (Description Annotation), <div> (Division Annotation),
<domain> (Domain/topic Annotation), <entities> (Entity Annotation), <entity> (En-
tity Annotation), <entry> (Entry Annotation), <errordetection> (Error Detection An-
notation (DEPRECATED)), <event> (Event Annotation), <ex> (Example Annotation),
<external> (External Annotation), <figure> (Figure Annotation), <gap> (Gap Annota-
tion), <head> (Head Annotation), <hiddenw> (Hidden Token Annotation), <t-hbr> (Hy-
phenation), <lang> (Language Annotation), <lemma> (Lemmatisation),
 (Linebreak),
<list> (List Annotation), <metric> (Metric Annotation), <modalities> (Modality An-
notation), <modality> (Modality Annotation), <morpheme> (Morphological Annotation),
<morphology> (Morphological Annotation), <new> (Correction Annotation), <note> (Note
Annotation), <observation> (Observation Annotation), <observations> (Observation
Annotation), <original> (Correction Annotation), <p> (Paragraph Annotation), <part>
(Part Annotation), <ph> (Phonetic Annotation/Content), <phoneme> (Phonological An-
notation), <phonology> (Phonological Annotation), <pos> (Part-of-Speech Annotation),
<predicate> (Predicate Annotation), <quote> (Quote Annotation), <ref> (Reference
Annotation), <relation> (Relation Annotation), <semrole> (Semantic Role Annotation),
<semroles> (Semantic Role Annotation), <sense> (Sense Annotation), <s> (Sentence An-
notation), <sentiment> (Sentiment Annotation), <sentiments> (Sentiment Annotation),
<spanrelation> (Span Relation Annotation), <spanrelations> (Span Relation Anno-
tation), <statement> (Statement Annotation), <statements> (Statement Annotation),
<str> (String Annotation), <subjectivity> (Subjectivity Annotation (DEPRECATED)),
<suggestion> (Correction Annotation), <su> (Syntactic Annotation), <syntax> (Syntac-
tic Annotation), <table> (Table Annotation), <term> (Term Annotation), <t> (Text An-
notation), <t-correction> (Correction Annotation), <t-error> (Error Detection Anno-
tation (DEPRECATED)), <t-gap> (Gap Annotation), <t-hspace> (Horizontal Whites-
pace), <t-lang> (Language Annotation), <t-ref> (Reference Annotation), <t-str>
(String Annotation), <t-style> (Style Annotation), <t-whitespace> (Vertical Whites-
pace), <timesegment> (Time Segmentation), <timing> (Time Segmentation), <utt> (Ut-
terance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annotation)

Explanation

Comments is a simple higher-order annotation element that may be used with any annotation. It holds text
that comments the annotation. Multiple comments are allowed per annotation.
An alternative to these FoLiA-specific comments, which are considered actual annotations, is standard XML
comments. Standard XML comments, however, are not considered actual annotations and most likely won’t
be interpreted by any tools.

Example

Consider the following example in the context of Sense Annotation.

4.2. Higher-order Annotation 97

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <sense-annotation set="wordnet"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </sense-annotation>
20 <description-annotation>
21 <annotator processor="p1" />
22 </description-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <p xml:id="example.p.1">
30 <s xml:id="example.p.1.s.2">
31 <t>I show an example.</t>
32 <w xml:id="example.p.1.s.2.w.1" class="WORD">
33 <t>I</t>
34 </w>
35 <w xml:id="example.p.1.s.2.w.2" class="WORD">
36 <t>show</t>
37 <sense class="show%2:39:02::">
38 <desc>give an exhibition of to an interested audience

↪→</desc>
39 </sense>
40 </w>
41 <w xml:id="example.p.1.s.2.w.3" class="WORD">
42 <t>an</t>
43 </w>
44 <w xml:id="example.p.1.s.2.w.4" class="WORD" space="no">
45 <t>example</t>
46 <sense class="example%1:09:00::">
47 <desc>an item of information that is typical of a class or group)</

↪→desc>
48 </sense>
49 </w>
50 <w xml:id="example.p.1.s.2.w.5" class="PUNCTUATION">
51 <t>.</t>
52 </w>
53 </s>
54 </p>

(continues on next page)

98 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

55 </text>
56 </FoLiA>

4.2.9 Description Annotation

This is a form of higher-order annotation that allows you to associate descriptions with almost all other
annotation elements

Specification

Annotation Category Higher-order Annotation
Declaration <description-annotation> *(note: there is never a set associated with this

annotation type)
Version History Since the beginning
Element <desc>

API Class Description (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

4.2. Higher-order Annotation 99

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Description.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation)
Valid Context <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),

<chunk> (Chunking), <chunking> (Chunking), <comment> (Comment Annota-
tion), <content> (Raw Content), <coreferencechain> (Coreference Annotation),
<coreferences> (Coreference Annotation), <coreferencelink> (Coreference Annota-
tion), <correction> (Correction Annotation), <current> (Correction Annotation), <def>
(Definition Annotation), <dependencies> (Dependency Annotation), <dependency> (De-
pendency Annotation), <desc> (Description Annotation), <div> (Division Annotation),
<domain> (Domain/topic Annotation), <entities> (Entity Annotation), <entity> (En-
tity Annotation), <entry> (Entry Annotation), <errordetection> (Error Detection An-
notation (DEPRECATED)), <event> (Event Annotation), <ex> (Example Annotation),
<external> (External Annotation), <figure> (Figure Annotation), <gap> (Gap Annota-
tion), <head> (Head Annotation), <hiddenw> (Hidden Token Annotation), <t-hbr> (Hy-
phenation), <lang> (Language Annotation), <lemma> (Lemmatisation),
 (Linebreak),
<list> (List Annotation), <metric> (Metric Annotation), <modalities> (Modality An-
notation), <modality> (Modality Annotation), <morpheme> (Morphological Annotation),
<morphology> (Morphological Annotation), <new> (Correction Annotation), <note> (Note
Annotation), <observation> (Observation Annotation), <observations> (Observation
Annotation), <original> (Correction Annotation), <p> (Paragraph Annotation), <part>
(Part Annotation), <ph> (Phonetic Annotation/Content), <phoneme> (Phonological An-
notation), <phonology> (Phonological Annotation), <pos> (Part-of-Speech Annotation),
<predicate> (Predicate Annotation), <quote> (Quote Annotation), <ref> (Reference
Annotation), <relation> (Relation Annotation), <semrole> (Semantic Role Annotation),
<semroles> (Semantic Role Annotation), <sense> (Sense Annotation), <s> (Sentence An-
notation), <sentiment> (Sentiment Annotation), <sentiments> (Sentiment Annotation),
<spanrelation> (Span Relation Annotation), <spanrelations> (Span Relation Anno-
tation), <statement> (Statement Annotation), <statements> (Statement Annotation),
<str> (String Annotation), <subjectivity> (Subjectivity Annotation (DEPRECATED)),
<suggestion> (Correction Annotation), <su> (Syntactic Annotation), <syntax> (Syntac-
tic Annotation), <table> (Table Annotation), <term> (Term Annotation), <t> (Text An-
notation), <t-correction> (Correction Annotation), <t-error> (Error Detection Anno-
tation (DEPRECATED)), <t-gap> (Gap Annotation), <t-hspace> (Horizontal Whites-
pace), <t-lang> (Language Annotation), <t-ref> (Reference Annotation), <t-str>
(String Annotation), <t-style> (Style Annotation), <t-whitespace> (Vertical Whites-
pace), <timesegment> (Time Segmentation), <timing> (Time Segmentation), <utt> (Ut-
terance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annotation)

Explanation

This is one of the simplest forms of higher-order annotation. Any annotation element may hold a desc element
containing in its body a human readable description for the annotation. Only one description is allowed per
annotation.

Example

Consider the following example in the context of Sense Annotation.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>

(continues on next page)

100 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

9 <annotator processor="p1" />
10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <sense-annotation set="wordnet"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </sense-annotation>
20 <description-annotation>
21 <annotator processor="p1" />
22 </description-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <p xml:id="example.p.1">
30 <s xml:id="example.p.1.s.2">
31 <t>I show an example.</t>
32 <w xml:id="example.p.1.s.2.w.1" class="WORD">
33 <t>I</t>
34 </w>
35 <w xml:id="example.p.1.s.2.w.2" class="WORD">
36 <t>show</t>
37 <sense class="show%2:39:02::">
38 <desc>give an exhibition of to an interested audience

↪→</desc>
39 </sense>
40 </w>
41 <w xml:id="example.p.1.s.2.w.3" class="WORD">
42 <t>an</t>
43 </w>
44 <w xml:id="example.p.1.s.2.w.4" class="WORD" space="no">
45 <t>example</t>
46 <sense class="example%1:09:00::">
47 <desc>an item of information that is typical of a class or group)</

↪→desc>
48 </sense>
49 </w>
50 <w xml:id="example.p.1.s.2.w.5" class="PUNCTUATION">
51 <t>.</t>
52 </w>
53 </s>
54 </p>
55 </text>
56 </FoLiA>

4.2.10 External Annotation

External annotation makes a reference to an external FoLiA document whose structure is inserted at the exact
place the external element occurs.

4.2. Higher-order Annotation 101

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Specification

Annotation Category Higher-order Annotation
Declaration <external-annotation> *(note: there is never a set associated with this annota-

tion type)
Version History Since v2.4.0
Element <external>

API Class External (FoLiApy API Reference)
Required Attributes

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation)

102 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.External.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <entry> (Entry
Annotation), <event> (Event Annotation), <ex> (Example Annotation), <figure> (Figure
Annotation), <head> (Head Annotation), <hiddenw> (Hidden Token Annotation),

(Linebreak), <list> (List Annotation), <note> (Note Annotation), <p> (Paragraph Anno-
tation), <part> (Part Annotation), <quote> (Quote Annotation), <ref> (Reference An-
notation), <s> (Sentence Annotation), <table> (Table Annotation), <term> (Term Anno-
tation), <utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token
Annotation)

Explanation

This annotation type type is used to split a larger document into multiple smaller ones, and link from the
parent document to the external child documents. It is a type of higher-order annotation that is inserted at a
certain place in the parent structure. The parent document would be functionally equivalent if the structure
of the external child documents were inserted at the point the <external> element occurs.
The <external> element is valid in most structural elements. It is not a mechanism to create stand-off
annotation documents. Each external document must also be a valid FoLiA document in its own right.
The src attribute can refer to a local file path (relative or absolute) or a remote URL.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <external-annotation>
9 <annotator processor="p1" />

10 </external-annotation>
11 </annotations>
12 <provenance>
13 <processor xml:id="p1" name="proycon" type="manual" />
14 </provenance>
15 </metadata>
16 <text xml:id="example.text">
17 <external src="chapter1.folia.xml" />
18 <external src="chapter2.folia.xml" />
19 </text>
20 </FoLiA>

4.3 Inline Annotation

This category encompasses (linguistic) annotation types describing a single structural element. Examples are
Part-of-Speech Annotation or Lemmatisation, which often describe a single token.
These annotation types are encoded in an inline fashion in FoLiA, i.e. they appear within the structural
element to which they apply (often words/tokens but not necessarily so) and make use of the hierarchical
nature of XML.
FoLiA defines the following types of inline annotation:

4.3. Inline Annotation 103

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• Inline Annotation – This category encompasses (linguistic) annotation types describing a single structural
element. Examples are Part-of-Speech Annotation or Lemmatisation, which often describe a single
token.

– Part-of-Speech Annotation – <pos> – Part-of-Speech Annotation, one of the most common types
of linguistic annotation. Assigns a lexical class to words.

– Lemmatisation – <lemma> – Lemma Annotation, one of the most common types of linguistic
annotation. Represents the canonical form of a word.

– Domain/topic Annotation – <domain> – Domain/topic Annotation. A form of inline annotation
used to assign a certain domain or topic to a structure element.

– Sense Annotation – <sense> – Sense Annotation allows to assign a lexical semantic sense to a
word.

– Error Detection Annotation (DEPRECATED) – <errordetection> – This annotation type is
deprecated in favour of Observation Annotation and only exists for backward compatibility.

– Subjectivity Annotation (DEPRECATED) – <subjectivity> – This annotation type is deprecated
in favour of Sentiment Annotation and only exists for backward compatibility.

– Language Annotation – <lang> – Language Annotation simply identifies the language a part of
the text is in. Though this information is often part of the metadata, this form is considered an
actual annotation.

4.3.1 Part-of-Speech Annotation

Part-of-Speech Annotation, one of the most common types of linguistic annotation. Assigns a lexical class to
words.

Specification

Annotation Category Inline Annotation
Declaration <pos-annotation set="..."> (note: set is mandatory)
Version History Since the beginning
Element <pos>

API Class PosAnnotation (FoLiApy API Reference)
Required Attributes

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

104 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.PosAnnotation.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation)

Valid Context

Feature subsets (extra attributes)

• head

Explanation & Examples

Part-of-Speech annotation allows the annotation of lexical categories using the pos element. The following
example shows a simple part-of-speech annotation. In this example , we declare PoS annotation to use the
tagset from the brown corpus (although we do not have an actual set definition for it).

4.3. Inline Annotation 105

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation />
6 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
7 <annotator processor="p1" />
8 </token-annotation>
9 <sentence-annotation>

10 <annotator processor="p1" />
11 </sentence-annotation>
12 <paragraph-annotation>
13 <annotator processor="p1" />
14 </paragraph-annotation>
15 <pos-annotation set="brown"> <!-- This is an ad-hoc set declaration as it␣

↪→is no URL and therefore not really defined -->
16 <annotator processor="p1" />
17 </pos-annotation>
18 </annotations>
19 <provenance>
20 <processor xml:id="p1" name="proycon" type="manual" />
21 </provenance>
22 </metadata>
23 <text xml:id="example.text">
24 <s xml:id="example.p.1.s.2">
25 <w xml:id="example.p.1.s.2.w.1" class="WORD">
26 <t>This</t>
27 <pos class="DT"/>
28 </w>
29 <w xml:id="example.p.1.s.2.w.2" class="WORD">
30 <t>is</t>
31 <pos class="VBZ"/>
32 </w>
33 <w xml:id="example.p.1.s.2.w.3" class="WORD">
34 <t>an</t>
35 <pos class="AT"/>
36 </w>
37 <w xml:id="example.p.1.s.2.w.4" class="WORD" space="no">
38 <t>example</t>
39 <pos class="NN"/>
40 </w>
41 <w xml:id="example.p.1.s.2.w.5" class="PUNCTUATION">
42 <t>.</t>
43 <pos class="."/>
44 </w>
45 </s>
46 </text>
47 </FoLiA>

Lexical annotation can take more complex forms than assignment of a single part-of-speech tag. There may
for example be numerous features associated with the part-of-speech tag, such as gender, number, case,
tense, mood, etc… FoLiA introduces a special paradigm for dealing with such features. This is described in
Features, please ensure you are familiar with this before reading the remainder of this section.
Two scenarios can be envisioned, one in which the class of the pos element encodes all features, and one in
which it is the foundation upon which is expanded. Which one is used is entirely up to the defined set.

106 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Option one:

<w xml:id="example.p.1.s.1.w.2">
<t>boot</t>
<pos head="N" class="N(singular)">

<feat subset="number" class="singular" />
<feat subset="gender" class="none" />
<feat subset="case" class="none" />

</pos>
</w>

In FoLiA, this attribute head is a predefined subset for PoS-annotation, i.e. the subset is commonly used and
has clear semantics; however, it still needs to be defined in the set definition. We can use such predefined
subsets as XML attributes.
Option two:

<w xml:id="example.p.1.s.1.w.2">
<t>boot</t>
<pos class="N">

<feat subset="number" class="singular" />
<feat subset="gender" class="none" />
<feat subset="case" class="none" />

</pos>
</w>

The last examples demonstrates a full FoLiA document with part-of-speech tagging with features:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?xml-stylesheet type="text/xsl" href="folia.xsl"?>
3 <FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia"␣

↪→xml:id="example.deep" generator="libfolia-v1.5" version="2.0.0">
4 <metadata type="native">
5 <annotations>
6 <text-annotation>
7 <annotator processor="p1" />
8 </text-annotation>
9 <sentence-annotation>

10 <annotator processor="p1" />
11 </sentence-annotation>
12 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/folia1.4/setdefinitions/tokconfig-nld.foliaset.ttl">
13 <annotator processor="p2" />
14 </token-annotation>
15 <pos-annotation set="https://raw.githubusercontent.com/proycon/folia/master/

↪→setdefinitions/frog-mbpos-cgn">
16 <annotator processor="p3.1" />
17 </pos-annotation>
18 <lemma-annotation set="https://raw.githubusercontent.com/proycon/folia/master/

↪→setdefinitions/frog-mblem-nl">
19 <annotator processor="p3.2" />
20 </lemma-annotation>
21 </annotations>
22 <provenance>
23 <processor xml:id="p1" name="proycon" type="manual" />
24 <processor xml:id="p2" name="ucto" version="0.14" />
25 <processor xml:id="p3" name="frog" version="0.16" begindatetime="2016-11-

↪→15T15:12:00">
(continues on next page)

4.3. Inline Annotation 107

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

26 <processor xml:id="p3.0" name="libfolia" version="1.14" type="generator" />
27 <processor xml:id="p3.1" name="mbpos" version="1.0" />
28 <processor xml:id="p3.2" name="mblem" version="1.1" />
29 </processor>
30 </provenance>
31 <meta id="language">nld</meta>
32 </metadata>
33 <text xml:id="example.deep.text">
34 <s xml:id="example.deep.p.1.s.1">
35 <t>De Russen kennen Nova Zembla sinds de 11e of 12e eeuw, toen handelaars van␣

↪→Novgorod het eiland al aandeden.</t>
36 <w xml:id="example.deep.p.1.s.1.w.1" class="WORD">
37 <t>De</t>
38 <pos class="LID(bep,stan,rest)" confidence="0.779762" head="LID">
39 <feat class="bep" subset="lwtype"/>
40 <feat class="stan" subset="naamval"/>
41 <feat class="rest" subset="npagr"/>
42 </pos>
43 <lemma class="de"/>
44 </w>
45 <w xml:id="example.deep.p.1.s.1.w.2" class="WORD">
46 <t>Russen</t>
47 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
48 <feat class="deeleigen" subset="spectype"/>
49 </pos>
50 <lemma class="Russen"/>
51 </w>
52 <w xml:id="example.deep.p.1.s.1.w.3" class="WORD">
53 <t>kennen</t>
54 <pos class="WW(pv,tgw,mv)" confidence="0.833333" head="WW">
55 <feat class="pv" subset="wvorm"/>
56 <feat class="tgw" subset="pvtijd"/>
57 <feat class="mv" subset="pvagr"/>
58 </pos>
59 <lemma class="kennen"/>
60 </w>
61 <w xml:id="example.deep.p.1.s.1.w.4" class="WORD">
62 <t>Nova</t>
63 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
64 <feat class="deeleigen" subset="spectype"/>
65 </pos>
66 <lemma class="Nova"/>
67 </w>
68 <w xml:id="example.deep.p.1.s.1.w.5" class="WORD">
69 <t>Zembla</t>
70 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
71 <feat class="deeleigen" subset="spectype"/>
72 </pos>
73 <lemma class="Zembla"/>
74 </w>
75 <w xml:id="example.deep.p.1.s.1.w.6" class="WORD">
76 <t>sinds</t>
77 <pos class="VZ(init)" confidence="0.999078" head="VZ">
78 <feat class="init" subset="vztype"/>
79 </pos>
80 <lemma class="sinds"/>

(continues on next page)

108 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

81 </w>
82 <w xml:id="example.deep.p.1.s.1.w.7" class="WORD">
83 <t>de</t>
84 <pos class="LID(bep,stan,rest)" confidence="0.981886" head="LID">
85 <feat class="bep" subset="lwtype"/>
86 <feat class="stan" subset="naamval"/>
87 <feat class="rest" subset="npagr"/>
88 </pos>
89 <lemma class="de"/>
90 </w>
91 <w xml:id="example.deep.p.1.s.1.w.8" class="NUMBER-ORDINAL">
92 <t>11e</t>
93 <pos class="TW(rang,prenom,stan)" confidence="0.990632" head="TW">
94 <feat class="rang" subset="numtype"/>
95 <feat class="prenom" subset="positie"/>
96 <feat class="stan" subset="naamval"/>
97 </pos>
98 <lemma class="11"/>
99 </w>

100 <w xml:id="example.deep.p.1.s.1.w.9" class="WORD">
101 <t>of</t>
102 <pos class="VG(neven)" confidence="0.855677" head="VG">
103 <feat class="neven" subset="conjtype"/>
104 </pos>
105 <lemma class="of"/>
106 </w>
107 <w xml:id="example.deep.p.1.s.1.w.10" class="NUMBER-ORDINAL">
108 <t>12e</t>
109 <pos class="TW(rang,prenom,stan)" confidence="0.990632" head="TW">
110 <feat class="rang" subset="numtype"/>
111 <feat class="prenom" subset="positie"/>
112 <feat class="stan" subset="naamval"/>
113 </pos>
114 <lemma class="12"/>
115 </w>
116 <w xml:id="example.deep.p.1.s.1.w.11" class="WORD" space="no">
117 <t>eeuw</t>
118 <pos class="N(soort,ev,basis,zijd,stan)" confidence="0.999633" head="N">
119 <feat class="soort" subset="ntype"/>
120 <feat class="ev" subset="getal"/>
121 <feat class="basis" subset="graad"/>
122 <feat class="zijd" subset="genus"/>
123 <feat class="stan" subset="naamval"/>
124 </pos>
125 <lemma class="eeuw"/>
126 </w>
127 <w xml:id="example.deep.p.1.s.1.w.12" class="PUNCTUATION">
128 <t>,</t>
129 <pos class="LET()" confidence="1" head="LET"/>
130 <lemma class=","/>
131 </w>
132 <w xml:id="example.deep.p.1.s.1.w.13" class="WORD">
133 <t>toen</t>
134 <pos class="VG(onder)" confidence="0.571429" head="VG">
135 <feat class="onder" subset="conjtype"/>
136 </pos>

(continues on next page)

4.3. Inline Annotation 109

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

137 <lemma class="toen"/>
138 </w>
139 <w xml:id="example.deep.p.1.s.1.w.14" class="WORD">
140 <t>handelaars</t>
141 <pos class="N(soort,mv,basis)" confidence="0.99944" head="N">
142 <feat class="soort" subset="ntype"/>
143 <feat class="mv" subset="getal"/>
144 <feat class="basis" subset="graad"/>
145 </pos>
146 <lemma class="handelaar"/>
147 </w>
148 <w xml:id="example.deep.p.1.s.1.w.15" class="WORD">
149 <t>van</t>
150 <pos class="VZ(init)" confidence="0.999469" head="VZ">
151 <feat class="init" subset="vztype"/>
152 </pos>
153 <lemma class="van"/>
154 </w>
155 <w xml:id="example.deep.p.1.s.1.w.16" class="WORD">
156 <t>Novgorod</t>
157 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
158 <feat class="deeleigen" subset="spectype"/>
159 </pos>
160 <lemma class="Novgorod"/>
161 </w>
162 <w xml:id="example.deep.p.1.s.1.w.17" class="WORD">
163 <t>het</t>
164 <pos class="LID(bep,stan,evon)" confidence="0.996855" head="LID">
165 <feat class="bep" subset="lwtype"/>
166 <feat class="stan" subset="naamval"/>
167 <feat class="evon" subset="npagr"/>
168 </pos>
169 <lemma class="het"/>
170 </w>
171 <w xml:id="example.deep.p.1.s.1.w.18" class="WORD">
172 <t>eiland</t>
173 <pos class="N(soort,ev,basis,onz,stan)" confidence="0.996804" head="N">
174 <feat class="soort" subset="ntype"/>
175 <feat class="ev" subset="getal"/>
176 <feat class="basis" subset="graad"/>
177 <feat class="onz" subset="genus"/>
178 <feat class="stan" subset="naamval"/>
179 </pos>
180 <lemma class="eiland"/>
181 </w>
182 <w xml:id="example.deep.p.1.s.1.w.19" class="WORD">
183 <t>al</t>
184 <pos class="BW()" confidence="0.90383" head="BW"/>
185 <lemma class="al"/>
186 </w>
187 <w xml:id="example.deep.p.1.s.1.w.20" class="WORD" space="no">
188 <t>aandeden</t>
189 <pos class="WW(pv,verl,mv)" confidence="0.999559" head="WW">
190 <feat class="pv" subset="wvorm"/>
191 <feat class="verl" subset="pvtijd"/>
192 <feat class="mv" subset="pvagr"/>

(continues on next page)

110 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

193 </pos>
194 <lemma class="aandoen"/>
195 </w>
196 <w xml:id="example.deep.p.1.s.1.w.21" class="PUNCTUATION">
197 <t>.</t>
198 <pos class="LET()" confidence="1" head="LET"/>
199 <lemma class="."/>
200 </w>
201 </s>
202 </text>
203 </FoLiA>

4.3.2 Lemmatisation

Lemma Annotation, one of the most common types of linguistic annotation. Represents the canonical form
of a word.

Specification

Annotation Category Inline Annotation
Declaration <lemma-annotation set="..."> (note: set is mandatory)
Version History Since the beginning
Element <lemma>

API Class LemmaAnnotation (FoLiApy API Reference)
Required Attributes

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

4.3. Inline Annotation 111

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.LemmaAnnotation.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation)

Valid Context

Example

The following example includes lemmas as well as part-of-speech tags:

1 <?xml version="1.0" encoding="UTF-8"?>
2 <?xml-stylesheet type="text/xsl" href="folia.xsl"?>
3 <FoLiA xmlns:xlink="http://www.w3.org/1999/xlink" xmlns="http://ilk.uvt.nl/folia"␣

↪→xml:id="example.deep" generator="libfolia-v1.5" version="2.0.0">
4 <metadata type="native">
5 <annotations>
6 <text-annotation>
7 <annotator processor="p1" />
8 </text-annotation>
9 <sentence-annotation>

10 <annotator processor="p1" />
11 </sentence-annotation>

(continues on next page)

112 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

12 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/
↪→uctodata/folia1.4/setdefinitions/tokconfig-nld.foliaset.ttl">

13 <annotator processor="p2" />
14 </token-annotation>
15 <pos-annotation set="https://raw.githubusercontent.com/proycon/folia/master/

↪→setdefinitions/frog-mbpos-cgn">
16 <annotator processor="p3.1" />
17 </pos-annotation>
18 <lemma-annotation set="https://raw.githubusercontent.com/proycon/folia/master/

↪→setdefinitions/frog-mblem-nl">
19 <annotator processor="p3.2" />
20 </lemma-annotation>
21 </annotations>
22 <provenance>
23 <processor xml:id="p1" name="proycon" type="manual" />
24 <processor xml:id="p2" name="ucto" version="0.14" />
25 <processor xml:id="p3" name="frog" version="0.16" begindatetime="2016-11-

↪→15T15:12:00">
26 <processor xml:id="p3.0" name="libfolia" version="1.14" type="generator" />
27 <processor xml:id="p3.1" name="mbpos" version="1.0" />
28 <processor xml:id="p3.2" name="mblem" version="1.1" />
29 </processor>
30 </provenance>
31 <meta id="language">nld</meta>
32 </metadata>
33 <text xml:id="example.deep.text">
34 <s xml:id="example.deep.p.1.s.1">
35 <t>De Russen kennen Nova Zembla sinds de 11e of 12e eeuw, toen handelaars van␣

↪→Novgorod het eiland al aandeden.</t>
36 <w xml:id="example.deep.p.1.s.1.w.1" class="WORD">
37 <t>De</t>
38 <pos class="LID(bep,stan,rest)" confidence="0.779762" head="LID">
39 <feat class="bep" subset="lwtype"/>
40 <feat class="stan" subset="naamval"/>
41 <feat class="rest" subset="npagr"/>
42 </pos>
43 <lemma class="de"/>
44 </w>
45 <w xml:id="example.deep.p.1.s.1.w.2" class="WORD">
46 <t>Russen</t>
47 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
48 <feat class="deeleigen" subset="spectype"/>
49 </pos>
50 <lemma class="Russen"/>
51 </w>
52 <w xml:id="example.deep.p.1.s.1.w.3" class="WORD">
53 <t>kennen</t>
54 <pos class="WW(pv,tgw,mv)" confidence="0.833333" head="WW">
55 <feat class="pv" subset="wvorm"/>
56 <feat class="tgw" subset="pvtijd"/>
57 <feat class="mv" subset="pvagr"/>
58 </pos>
59 <lemma class="kennen"/>
60 </w>
61 <w xml:id="example.deep.p.1.s.1.w.4" class="WORD">
62 <t>Nova</t>

(continues on next page)

4.3. Inline Annotation 113

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

63 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
64 <feat class="deeleigen" subset="spectype"/>
65 </pos>
66 <lemma class="Nova"/>
67 </w>
68 <w xml:id="example.deep.p.1.s.1.w.5" class="WORD">
69 <t>Zembla</t>
70 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
71 <feat class="deeleigen" subset="spectype"/>
72 </pos>
73 <lemma class="Zembla"/>
74 </w>
75 <w xml:id="example.deep.p.1.s.1.w.6" class="WORD">
76 <t>sinds</t>
77 <pos class="VZ(init)" confidence="0.999078" head="VZ">
78 <feat class="init" subset="vztype"/>
79 </pos>
80 <lemma class="sinds"/>
81 </w>
82 <w xml:id="example.deep.p.1.s.1.w.7" class="WORD">
83 <t>de</t>
84 <pos class="LID(bep,stan,rest)" confidence="0.981886" head="LID">
85 <feat class="bep" subset="lwtype"/>
86 <feat class="stan" subset="naamval"/>
87 <feat class="rest" subset="npagr"/>
88 </pos>
89 <lemma class="de"/>
90 </w>
91 <w xml:id="example.deep.p.1.s.1.w.8" class="NUMBER-ORDINAL">
92 <t>11e</t>
93 <pos class="TW(rang,prenom,stan)" confidence="0.990632" head="TW">
94 <feat class="rang" subset="numtype"/>
95 <feat class="prenom" subset="positie"/>
96 <feat class="stan" subset="naamval"/>
97 </pos>
98 <lemma class="11"/>
99 </w>

100 <w xml:id="example.deep.p.1.s.1.w.9" class="WORD">
101 <t>of</t>
102 <pos class="VG(neven)" confidence="0.855677" head="VG">
103 <feat class="neven" subset="conjtype"/>
104 </pos>
105 <lemma class="of"/>
106 </w>
107 <w xml:id="example.deep.p.1.s.1.w.10" class="NUMBER-ORDINAL">
108 <t>12e</t>
109 <pos class="TW(rang,prenom,stan)" confidence="0.990632" head="TW">
110 <feat class="rang" subset="numtype"/>
111 <feat class="prenom" subset="positie"/>
112 <feat class="stan" subset="naamval"/>
113 </pos>
114 <lemma class="12"/>
115 </w>
116 <w xml:id="example.deep.p.1.s.1.w.11" class="WORD" space="no">
117 <t>eeuw</t>
118 <pos class="N(soort,ev,basis,zijd,stan)" confidence="0.999633" head="N">

(continues on next page)

114 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

119 <feat class="soort" subset="ntype"/>
120 <feat class="ev" subset="getal"/>
121 <feat class="basis" subset="graad"/>
122 <feat class="zijd" subset="genus"/>
123 <feat class="stan" subset="naamval"/>
124 </pos>
125 <lemma class="eeuw"/>
126 </w>
127 <w xml:id="example.deep.p.1.s.1.w.12" class="PUNCTUATION">
128 <t>,</t>
129 <pos class="LET()" confidence="1" head="LET"/>
130 <lemma class=","/>
131 </w>
132 <w xml:id="example.deep.p.1.s.1.w.13" class="WORD">
133 <t>toen</t>
134 <pos class="VG(onder)" confidence="0.571429" head="VG">
135 <feat class="onder" subset="conjtype"/>
136 </pos>
137 <lemma class="toen"/>
138 </w>
139 <w xml:id="example.deep.p.1.s.1.w.14" class="WORD">
140 <t>handelaars</t>
141 <pos class="N(soort,mv,basis)" confidence="0.99944" head="N">
142 <feat class="soort" subset="ntype"/>
143 <feat class="mv" subset="getal"/>
144 <feat class="basis" subset="graad"/>
145 </pos>
146 <lemma class="handelaar"/>
147 </w>
148 <w xml:id="example.deep.p.1.s.1.w.15" class="WORD">
149 <t>van</t>
150 <pos class="VZ(init)" confidence="0.999469" head="VZ">
151 <feat class="init" subset="vztype"/>
152 </pos>
153 <lemma class="van"/>
154 </w>
155 <w xml:id="example.deep.p.1.s.1.w.16" class="WORD">
156 <t>Novgorod</t>
157 <pos class="SPEC(deeleigen)" confidence="1" head="SPEC">
158 <feat class="deeleigen" subset="spectype"/>
159 </pos>
160 <lemma class="Novgorod"/>
161 </w>
162 <w xml:id="example.deep.p.1.s.1.w.17" class="WORD">
163 <t>het</t>
164 <pos class="LID(bep,stan,evon)" confidence="0.996855" head="LID">
165 <feat class="bep" subset="lwtype"/>
166 <feat class="stan" subset="naamval"/>
167 <feat class="evon" subset="npagr"/>
168 </pos>
169 <lemma class="het"/>
170 </w>
171 <w xml:id="example.deep.p.1.s.1.w.18" class="WORD">
172 <t>eiland</t>
173 <pos class="N(soort,ev,basis,onz,stan)" confidence="0.996804" head="N">
174 <feat class="soort" subset="ntype"/>

(continues on next page)

4.3. Inline Annotation 115

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

175 <feat class="ev" subset="getal"/>
176 <feat class="basis" subset="graad"/>
177 <feat class="onz" subset="genus"/>
178 <feat class="stan" subset="naamval"/>
179 </pos>
180 <lemma class="eiland"/>
181 </w>
182 <w xml:id="example.deep.p.1.s.1.w.19" class="WORD">
183 <t>al</t>
184 <pos class="BW()" confidence="0.90383" head="BW"/>
185 <lemma class="al"/>
186 </w>
187 <w xml:id="example.deep.p.1.s.1.w.20" class="WORD" space="no">
188 <t>aandeden</t>
189 <pos class="WW(pv,verl,mv)" confidence="0.999559" head="WW">
190 <feat class="pv" subset="wvorm"/>
191 <feat class="verl" subset="pvtijd"/>
192 <feat class="mv" subset="pvagr"/>
193 </pos>
194 <lemma class="aandoen"/>
195 </w>
196 <w xml:id="example.deep.p.1.s.1.w.21" class="PUNCTUATION">
197 <t>.</t>
198 <pos class="LET()" confidence="1" head="LET"/>
199 <lemma class="."/>
200 </w>
201 </s>
202 </text>
203 </FoLiA>

4.3.3 Domain/topic Annotation

Domain/topic Annotation. A form of inline annotation used to assign a certain domain or topic to a structure
element.

Specification

Annotation Category Inline Annotation
Declaration <domain-annotation set="..."> (note: set is mandatory)
Version History Since the beginning
Element <domain>

API Class DomainAnnotation (FoLiApy API Reference)
Required Attributes

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

Optional Attributes

116 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.DomainAnnotation.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation)

Valid Context

4.3. Inline Annotation 117

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Example

The following document shows a domain annotation on the sentence level:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <sentence-annotation>
9 <annotator processor="p1" />

10 </sentence-annotation>
11 <paragraph-annotation>
12 <annotator processor="p1" />
13 </paragraph-annotation>
14 <domain-annotation set="topics"> <!-- an ad-hoc set -->
15 <annotator processor="p1" />
16 </domain-annotation>
17 <lang-annotation set="iso638-3"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </lang-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <p xml:id="example.p.1">
27 <s xml:id="example.p.1.s.1">
28 <t>I show an example:</t>
29 <lang class="eng" />
30 </s>
31 <s xml:id="example.p.1.s.2">
32 <t>� ���� ������, �� ����� ������.</t>
33 <domain class="animals" />
34 <lang class="rus" />
35 </s>
36 </p>
37 </text>
38 </FoLiA>

4.3.4 Sense Annotation

Sense Annotation allows to assign a lexical semantic sense to a word.

Specification

Annotation Category Inline Annotation
Declaration <sense-annotation set="..."> (note: set is mandatory)
Version History Since the beginning
Element <sense>

API Class SenseAnnotation (FoLiApy API Reference)

118 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.SenseAnnotation.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Required Attributes

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry

4.3. Inline Annotation 119

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation)

Valid Context

Feature subsets (extra attributes)

• synset

Explanation

In semantic sense annotation, the classes will correspond to some kind of lexical unit ID or synset ID. In
vocabularies that make an explicit distinction between lexical units and synonym sets (synsets), you can use
the synset predefined subset for notation of the latter. A simpler alternative is to just use two different sets
similtaneously (two sense annotations per item).
You can use Description Annotation to optionally associate a human readable description with the sense
annotation (or any other annotation for that matter).

Example

The following example shows sense annotations:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <sense-annotation set="wordnet"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </sense-annotation>
20 <description-annotation>
21 <annotator processor="p1" />
22 </description-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <p xml:id="example.p.1">
30 <s xml:id="example.p.1.s.2">

(continues on next page)

120 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

31 <t>I show an example.</t>
32 <w xml:id="example.p.1.s.2.w.1" class="WORD">
33 <t>I</t>
34 </w>
35 <w xml:id="example.p.1.s.2.w.2" class="WORD">
36 <t>show</t>
37 <sense class="show%2:39:02::">
38 <desc>give an exhibition of to an interested audience

↪→</desc>
39 </sense>
40 </w>
41 <w xml:id="example.p.1.s.2.w.3" class="WORD">
42 <t>an</t>
43 </w>
44 <w xml:id="example.p.1.s.2.w.4" class="WORD" space="no">
45 <t>example</t>
46 <sense class="example%1:09:00::">
47 <desc>an item of information that is typical of a class or group)</

↪→desc>
48 </sense>
49 </w>
50 <w xml:id="example.p.1.s.2.w.5" class="PUNCTUATION">
51 <t>.</t>
52 </w>
53 </s>
54 </p>
55 </text>
56 </FoLiA>

4.3.5 Error Detection Annotation (DEPRECATED)

This annotation type is deprecated, see Observation Annotation instead.

4.3.6 Subjectivity Annotation (DEPRECATED)

This annotation type is deprecated, see Sentiment Annotation instead.

4.3.7 Language Annotation

Language Annotation simply identifies the language a part of the text is in. Though this information is often
part of the metadata, this form is considered an actual annotation.

Specification

Annotation Category Inline Annotation
Declaration <lang-annotation set="..."> (note: set is mandatory)
Version History since v0.8.1
Element <lang>

API Class LangAnnotation (FoLiApy API Reference)
Required Attributes

4.3. Inline Annotation 121

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.LangAnnotation.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they

122 Chapter 4. Annotation Types

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation)

Valid Context

Text markup Element

Element <t-lang>

API Class TextMarkupLanguage (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

4.3. Inline Annotation 123

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TextMarkupLanguage.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context

Explanation

Language identification is used to identify a certain structural element as being in a certain language, so it
can be applied to the text as a whole or smaller elements within it. The language vocabulary is determined
by the set definition.
The text markup variant (<t-lang>), can be used in non-tokenised contexts.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <sentence-annotation>
9 <annotator processor="p1" />

10 </sentence-annotation>
11 <paragraph-annotation>
12 <annotator processor="p1" />
13 </paragraph-annotation>
14 <domain-annotation set="topics"> <!-- an ad-hoc set -->
15 <annotator processor="p1" />
16 </domain-annotation>
17 <lang-annotation set="iso638-3"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </lang-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <p xml:id="example.p.1">
27 <s xml:id="example.p.1.s.1">
28 <t>I show an example:</t>
29 <lang class="eng" />
30 </s>

(continues on next page)

124 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

31 <s xml:id="example.p.1.s.2">
32 <t>� ���� ������, �� ����� ������.</t>
33 <domain class="animals" />
34 <lang class="rus" />
35 </s>
36 </p>
37 </text>
38 </FoLiA>

4.4 Span Annotation

This category encompasses (linguistic) annotation types that span one or more structural elements. Examples
are (Named) Entities or Multi-word Expressions, Dependency Relations, and many others. FoLiA implements
these as a stand-off layer that refers back to the structural elements (often words/tokens). The layer itself is
embedded in a structural level of a wider scope (such as a sentence).
Span annotation elements are always embedded in a layer element, this is an element that groups span
annotations of a particular annotation type and set together. Each annotation type has its own layer element
and the layer elements themselves are embedded, inline, in a structural element. So, say you want to do
named entity annotation (a form of span annotation) over words, then after you defined the words, you can
embed a layer (<entities>) containing the span annotation elements (<entity> in this example), which
refer back to the words. Such a reference back is done with the wref element.
Consider the following example:

<s xml:id="example.p.1.s.1">
<t>The Dalai Lama greeted him.</t>
<w xml:id="example.p.1.s.1.w.1"><t>The</t></w>
<w xml:id="example.p.1.s.1.w.2"><t>Dalai</t></w>
<w xml:id="example.p.1.s.1.w.3"><t>Lama</t></w>
<w xml:id="example.p.1.s.1.w.4"><t>greeted</t></w>
<w xml:id="example.p.1.s.1.w.5"><t>him</t></w>
<w xml:id="example.p.1.s.1.w.6"><t>.</t></w>
<entities>
<entity xml:id="example.p.1.s.1.entity.1" class="per">

<wref id="example.p.1.s.1.w.2" t="Dalai" />
<wref id="example.p.1.s.1.w.3" t="Lama" />

</entity>
</entities>

</s>

The next sentence may in turn have an <entities> layer as well. The design principle behind this is to
keep information, even when it concerns span annotations, as local as possible rather than spread out of the
document. This facilitates the job for streaming parsers and humans looking at the raw XML. Nevertheless,
this is a convention which most FoLiA libraries adhere to, but is not a strict requirement. So it is still possible
and valid to place your layer at any higher structural level, as long as all the elements you refer to are within
its scope and all defined prior to the layer itself.

Note: As you might have seen, the wref element may carry a t attribute with the text of word/structure
it refers to. This redundancy is merely to provide extra clarity to the person inspecting the XML and is not
mandatory.

Note: The wref elements refers to words/tokens or sub-token annotations such as morphemes and

4.4. Span Annotation 125

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

phonemes. We do not use it to refer to higher-level structural elements!

Note: The order of the references should always correspond to the order of the tokens in the text. However,
the references need not be strictly continuous; there may be gaps.

Depending on the type of span annotation, it is possible that the element may be nested. This is for example
the case for Syntactic Annotation, where the nesting of syntactic units allows the building of syntax trees.
Span annotation elements of a more complex nature may require or allow so-called span role elements. Span
roles encapsulate references to the words and ascribe a more defined meaning to the span, for instance to
mark the head or dependent in a dependency relation. Span role elements themselves never carry any classes
and can only be used in the scope of a certain span annotation element, not standalone. They can still carry
Features, though.
FoLiA defines the following types of span annotation:

• Span Annotation – This category encompasses (linguistic) annotation types that span one or more
structural elements. Examples are (Named) Entities or Multi-word Expressions, Dependency Relations,
and many others. FoLiA implements these as a stand-off layer that refers back to the structural elements
(often words/tokens). The layer itself is embedded in a structural level of a wider scope (such as a
sentence).

– Syntactic Annotation – <su> – Assign grammatical categories to spans of words. Syntactic units are
nestable and allow representation of complete syntax trees that are usually the result of consistuency
parsing.

– Chunking – <chunk> – Assigns shallow grammatical categories to spans of words. Unlike syntax
annotation, chunks are not nestable. They are often produced by a process called Shallow Parsing,
or alternatively, chunking.

– Entity Annotation – <entity> – Entity annotation is a broad and common category in FoLiA.
It is used for specifying all kinds of multi-word expressions, including but not limited to named
entities. The set definition used determines the vocabulary and therefore the precise nature of the
entity annotation.

– Dependency Annotation – <dependency> – Dependency relations are syntactic relations between
spans of tokens. A dependency relation takes a particular class and consists of a single head
component and a single dependent component.

– Time Segmentation – <timesegment> – FoLiA supports time segmentation to allow for more fine-
grained control of timing information by associating spans of words/tokens with exact timestamps.
It can provide a more linguistic alternative to Event Annotation.

– Coreference Annotation – <coreferencechain> – Relations between words that refer to the
same referent (anaphora) are expressed in FoLiA using Coreference Annotation. The co-reference
relations are expressed by specifying the entire chain in which all links are coreferent.

– Semantic Role Annotation – <semrole> – This span annotation type allows for the expression of
semantic roles, or thematic roles. It is often used together with Predicate Annotation

– Predicate Annotation – <predicate> – Allows annotation of predicates, this annotation type is
usually used together with Semantic Role Annotation. The types of predicates are defined by a
user-defined set definition.

– Observation Annotation – <observation> – Observation annotation is used to make an obser-
vation pertaining to one or more word tokens. Observations offer a an external qualification on
part of a text. The qualification is expressed by the class, in turn defined by a set. The precise
semantics of the observation depends on the user-defined set.

– Sentiment Annotation – <sentiment> – Sentiment analysis marks subjective information such as
sentiments or attitudes expressed in text. The sentiments/attitudes are defined by a user-defined
set definition.

126 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– Statement Annotation – <statement> – Statement annotation, sometimes also refered to as
attribution, allows to decompose statements into the source of the statement, the content of the
statement, and the way these relate, provided these are made explicit in the text.

– Modality Annotation – <modality> – Modality annotation is used to describe the relationship
between cue word(s) and the scope it covers. It is primarily used for the annotation of negation,
but also for the annotation of factuality, certainty and truthfulness:.

4.4.1 Syntactic Annotation

Assign grammatical categories to spans of words. Syntactic units are nestable and allow representation of
complete syntax trees that are usually the result of consistuency parsing.

Specification

Annotation Category Span Annotation
Declaration <syntax-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <su>

API Class SyntacticUnit (FoLiApy API Reference)
Layer Element <syntax>

Span Role Elements

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

4.4. Span Annotation 127

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.SyntacticUnit.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation), <su> (Syntactic An-
notation)

Valid Context <su> (Syntactic Annotation), <syntax> (Syntactic Annotation)

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

Syntax annotation allows representation of a syntax tree, commonly the result of constituency parsing. This
is a nested form of span annotation, in which nodes in the tree are represented by <su> (syntactic unit)
elements. Each syntactic unit may carry a class in a user-defined set, determining the vocabulary of the
syntax annotation.
It is recommended for each syntactic unit to have a unique identifier.
See also:

For dependency parsing, see Dependency Annotation instead.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
(continues on next page)

128 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <syntax-annotation set="syntax"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </syntax-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <p xml:id="example.p.1">
27 <s xml:id="example.p.1.s.1">
28 <t>The Dalai Lama greeted him.</t>
29 <w xml:id="example.p.1.s.1.w.1"><t>The</t></w>
30 <w xml:id="example.p.1.s.1.w.2"><t>Dalai</t></w>
31 <w xml:id="example.p.1.s.1.w.3"><t>Lama</t></w>
32 <w xml:id="example.p.1.s.1.w.4"><t>greeted</t></w>
33 <w xml:id="example.p.1.s.1.w.5" space="no"><t>him</t></w>
34 <w xml:id="example.p.1.s.1.w.6"><t>.</t></w>
35 <syntax>
36 <su xml:id="example.p.1.s.1.su.1" class="s">
37 <su xml:id="example.p.1.s.1.su.1_1" class="np">
38 <su xml:id="example.p.1.s.1.su.1_1_1" class="det">
39 <wref id="example.p.1.s.1.w.1" t="The" />
40 </su>
41 <su xml:id="example.p.1.s.1.su.1_1_2" class="pn">
42 <wref id="example.p.1.s.1.w.2" t="Dalai" />
43 <wref id="example.p.1.s.1.w.3" t="Lama" />
44 </su>
45 </su>
46 <su xml:id="example.p.1.s.1.su.1_2" class="vp">
47 <su xml:id="example.p.1.s.1.su.1_2_1" class="v">
48 <wref id="example.p.1.s.1.w.4" t="greeted" />
49 </su>
50 <su xml:id="example.p.1.s.1.su.1_2_2" class="pron">
51 <wref id="example.p.1.s.1.w.5" t="him" />
52 </su>
53 </su>
54 </su>
55 </syntax>
56 </s>
57 </p>
58 </text>
59 </FoLiA>

4.4. Span Annotation 129

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.4.2 Chunking

Assigns shallow grammatical categories to spans of words. Unlike syntax annotation, chunks are not nestable.
They are often produced by a process called Shallow Parsing, or alternatively, chunking.

Specification

Annotation Category Span Annotation
Declaration <chunking-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <chunk>

API Class Chunk (FoLiApy API Reference)
Layer Element <chunking>

Span Role Elements

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.

130 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Chunk.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <chunking> (Chunking)

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <chunking-annotation set="chunkset"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </chunking-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>

(continues on next page)

4.4. Span Annotation 131

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

24 </metadata>
25 <text xml:id="example.text">
26 <p xml:id="example.p.1">
27 <s xml:id="example.p.1.s.1">
28 <t>The Dalai Lama greeted him.</t>
29 <w xml:id="example.p.1.s.1.w.1"><t>The</t></w>
30 <w xml:id="example.p.1.s.1.w.2"><t>Dalai</t></w>
31 <w xml:id="example.p.1.s.1.w.3"><t>Lama</t></w>
32 <w xml:id="example.p.1.s.1.w.4"><t>greeted</t></w>
33 <w xml:id="example.p.1.s.1.w.5" space="no"><t>him</t></w>
34 <w xml:id="example.p.1.s.1.w.6"><t>.</t></w>
35 <chunking>
36 <chunk xml:id="example.p.1.s.1.chunk.1">
37 <wref id="example.p.1.s.1.w.1" t="The" />
38 <wref id="example.p.1.s.1.w.2" t="Dalai" />
39 <wref id="example.p.1.s.1.w.3" t="Lama" />
40 </chunk>
41 <chunk xml:id="example.p.1.s.1.chunk.2">
42 <wref id="example.p.1.s.1.w.4" t="greeted" />
43 </chunk>
44 <chunk xml:id="example.p.1.s.1.chunk.3">
45 <wref id="example.p.1.s.1.w.5" t="him" />
46 <wref id="example.p.1.s.1.w.6" t="." />
47 </chunk>
48 </chunking>
49 </s>
50 </p>
51 </text>
52 </FoLiA>

4.4.3 Entity Annotation

Entity annotation is a broad and common category in FoLiA. It is used for specifying all kinds of multi-word
expressions, including but not limited to named entities. The set definition used determines the vocabulary
and therefore the precise nature of the entity annotation.

Specification

Annotation Category Span Annotation
Declaration <entity-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <entity>

API Class Entity (FoLiApy API Reference)
Layer Element <entities>

Span Role Elements

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName

132 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Entity.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <entities> (Entity Annotation)

4.4. Span Annotation 133

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

The entities layer offers a generic solution to encode various types of entities or multi-word expressions,
including but not limited to named entities. The set used determines the precise semantics behind the entities.
This annotation type, being the simplest of all span annotations, is much used in FoLiA.
It is recommended, but not required, for each entity to have a unique identifier.

Examples

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl" format="text/turtle">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <entity-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/namedentities.foliaset.ttl" format="text/turtle">
18 <annotator processor="p1" />
19 </entity-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <p xml:id="example.p.1">
27 <s xml:id="example.p.1.s.1">
28 <t>The Dalai Lama currently lives in Dharamsala in India.</t>
29 <w xml:id="example.p.1.s.1.w.1" class="WORD">
30 <t>The</t>
31 </w>
32 <w xml:id="example.p.1.s.1.w.2" class="WORD">
33 <t>Dalai</t>
34 </w>
35 <w xml:id="example.p.1.s.1.w.3" class="WORD">
36 <t>Lama</t>
37 </w>
38 <w xml:id="example.p.1.s.1.w.4" class="WORD">
39 <t>currently</t>
40 </w>

(continues on next page)

134 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

41 <w xml:id="example.p.1.s.1.w.5" class="WORD">
42 <t>lives</t>
43 </w>
44 <w xml:id="example.p.1.s.1.w.6" class="WORD">
45 <t>in</t>
46 </w>
47 <w xml:id="example.p.1.s.1.w.7" class="WORD">
48 <t>Dharamsala</t>
49 </w>
50 <w xml:id="example.p.1.s.1.w.8" class="WORD">
51 <t>in</t>
52 </w>
53 <w xml:id="example.p.1.s.1.w.9" class="WORD" space="no">
54 <t>India</t>
55 </w>
56 <w xml:id="example.p.1.s.1.w.10" class="PUNCTUATION">
57 <t>.</t>
58 </w>
59 <entities>
60 <entity xml:id="example.p.1.s.1.entity.1" class="per">
61 <wref id="example.p.1.s.1.w.2" t="Dalai" />
62 <wref id="example.p.1.s.1.w.3" t="Lama" />
63 </entity>
64 <entity xml:id="example.p.1.s.1.entity.2" class="loc.city">
65 <wref id="example.p.1.s.1.w.7" t="Dharamsala" />
66 </entity>
67 <entity xml:id="example.p.1.s.1.entity.3" class="loc.country">
68 <wref id="example.p.1.s.1.w.9" t="India" />
69 </entity>
70 </entities>
71 </s>
72 </p>
73 </text>
74 </FoLiA>

It is possible to associate inline annotations with span annotations, provided you declare the annotation type
with groupannotations="yes". For entities, this is useful in case you have a more fine-grained tokenisation
layer but want to associate certain information such as part-of-speech tags or lemmas with larger entities than
tokens:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />

(continues on next page)

4.4. Span Annotation 135

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

16 </paragraph-annotation>
17 <entity-annotation groupannotations="yes">
18 <annotator processor="p1" />
19 </entity-annotation>
20 <pos-annotation set="brown"> <!-- This is an ad-hoc set declaration as it␣

↪→is no URL and therefore not really defined -->
21 <annotator processor="p1" />
22 </pos-annotation>
23 <lemma-annotation set="english-adhoc"> <!-- This is an ad-hoc set␣

↪→declaration as it is no URL and therefore not really defined -->
24 <annotator processor="p1" />
25 </lemma-annotation>
26 </annotations>
27 <provenance>
28 <processor xml:id="p1" name="proycon" type="manual" />
29 </provenance>
30 </metadata>
31 <text xml:id="example.text">
32 <p xml:id="example.p.1">
33 <s xml:id="example.p.1.s.1">
34 <t>The container-ship lost its cargo of bottle openers.</t>
35 <w xml:id="example.p.1.s.1.w.1" class="WORD">
36 <t>The</t>
37 <pos class="AT" />
38 </w>
39 <w xml:id="example.p.1.s.1.w.2" class="WORD" space="no">
40 <t>container</t>
41 </w>
42 <w xml:id="example.p.1.s.1.w.3" class="WORD" space="no">
43 <t>-</t>
44 </w>
45 <w xml:id="example.p.1.s.1.w.4" class="WORD">
46 <t>ship</t>
47 </w>
48 <w xml:id="example.p.1.s.1.w.5" class="WORD">
49 <t>lost</t>
50 <pos class="VBD" />
51 </w>
52 <w xml:id="example.p.1.s.1.w.6" class="WORD">
53 <t>its</t>
54 <pos class="PP$" />
55 </w>
56 <w xml:id="example.p.1.s.1.w.7" class="WORD">
57 <t>cargo</t>
58 <pos class="NN" />
59 </w>
60 <w xml:id="example.p.1.s.1.w.8" class="WORD">
61 <t>of</t>
62 <pos class="IN" />
63 </w>
64 <w xml:id="example.p.1.s.1.w.9" class="WORD">
65 <t>bottle</t>
66 </w>
67 <w xml:id="example.p.1.s.1.w.10" class="WORD" space="no">
68 <t>openers</t>
69 </w>

(continues on next page)

136 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

70 <w xml:id="example.p.1.s.1.w.11" class="PUNCTUATION">
71 <t>.</t>
72 </w>
73 <entities>
74 <entity xml:id="example.p.1.s.1.entity.1">
75 <wref id="example.p.1.s.1.w.2" t="container" />
76 <wref id="example.p.1.s.1.w.3" t="-" />
77 <wref id="example.p.1.s.1.w.4" t="ship" />
78 <pos class="NN" />
79 <lemma class="container-ship" />
80 </entity>
81 <entity xml:id="example.p.1.s.1.entity.2">
82 <wref id="example.p.1.s.1.w.9" t="bottle" />
83 <wref id="example.p.1.s.1.w.10" t="openers" />
84 <pos class="NNS" />
85 <lemma class="bottle opener" />
86 </entity>
87 </entities>
88 </s>
89 </p>
90 </text>
91 </FoLiA>

4.4.4 Dependency Annotation

Dependency relations are syntactic relations between spans of tokens. A dependency relation takes a particular
class and consists of a single head component and a single dependent component.

Specification

Annotation Category Span Annotation
Declaration <dependency-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Slightly revised since v0.8 (no su attribute on hd/dep)
Element <dependency>

API Class Dependency (FoLiApy API Reference)
Layer Element <dependencies>

Span Role Elements <dep> (DependencyDependent), <hd> (Headspan)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

4.4. Span Annotation 137

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Dependency.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <dependencies> (Dependency Annotation)

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

Dependency relations are syntactic relations between spans of tokens. A dependency relation takes a particular
class and consists of a single head component and a single dependent component. In the sample “He sees”,

138 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

there is syntactic dependency between the two words: “sees” is the head, and “He” is the dependant, and the
relation can be qualified as something like subject, as the dependant is the subject of the head word. Each
dependency relation is explicitly noted in FoLiA.
The element <dependencies> introduces this annotation layer. Within it, <dependency> elements describe
all dependency pairs. The <dependency> element always contains two span roles: one head element (<hd>)
and one dependent element (<dep>). Within these span roles, the words referenced in the usual stand-off
fashion, using <wref>.

Example

In the example below, we show a Dutch sentence parsed with the Alpino Parser.
For a better understanding, The following figure illustrates the syntactic parse with the dependency relations
(blue).

We show not only the dependency layer, but also the syntax layer (Syntactic Annotation) to which it is related.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
(continues on next page)

4.4. Span Annotation 139

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <dependency-annotation set="alpino-dependencies"> <!-- an ad-hoc set -->
18 <annotator processor="p2" />
19 </dependency-annotation>
20 <syntax-annotation set="alpino-constituents"> <!-- an ad-hoc set -->
21 <annotator processor="p2" />
22 </syntax-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 <processor xml:id="p2" name="alpino" />
27 </provenance>
28 </metadata>
29 <text xml:id="example.text">
30 <p xml:id="example.p.1">
31 <s xml:id="example.p.1.s.1">
32 <t>De man begroette hem.</t>
33 <w xml:id="example.p.1.s.1.w.1"><t>De</t></w>
34 <w xml:id="example.p.1.s.1.w.2"><t>man</t></w>
35 <w xml:id="example.p.1.s.1.w.3"><t>begroette</t></w>
36 <w xml:id="example.p.1.s.1.w.4" space="no"><t>hem</t></w>
37 <w xml:id="example.p.1.s.1.w.5"><t>.</t></w>
38 <dependencies>
39 <dependency xml:id="example.p.1.s.1.dependency.1" class="su">
40 <hd>
41 <wref id="example.p.1.s.1.w.3" t="begroette"/>
42 </hd>
43 <dep>
44 <wref id="example.p.1.s.1.w.2" t="man" />
45 </dep>
46 </dependency>
47 <dependency xml:id="example.p.1.s.1.dependency.3" class="obj1">
48 <hd>
49 <wref id="example.p.1.s.1.w.3" t="begroette"/>
50 </hd>
51 <dep>
52 <wref id="example.p.1.s.1.w.4" t="hem" />
53 </dep>
54 </dependency>
55 <dependency xml:id="example.p.1.s.1.dependency.2" class="det">
56 <hd>
57 <wref id="example.p.1.s.1.w.2" t="man" />
58 </hd>
59 <dep>
60 <wref id="example.p.1.s.1.w.1" t="De" />
61 </dep>

(continues on next page)

140 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

62 </dependency>
63 </dependencies>
64 <syntax>
65 <su xml:id="example.p.1.s.1.su.1" class="top">
66 <su xml:id="example.p.1.s.1.su.1_1" class="smain">
67 <su xml:id="example.p.1.s.1.su.1_1_1" class="np">
68 <su xml:id="example.p.1.s.1.su.1_1_1_1" class="top">
69 <wref id="example.p.1.s.1.w.1" t="De" />
70 </su>
71 <su xml:id="example.p.1.s.1.su.1_1_1_2" class="top">
72 <wref id="example.p.1.s.1.w.2" t="man" />
73 </su>
74 </su>
75 <su xml:id="example.p.1.s.1.su.1_1_2" class="verb">
76 <wref id="example.p.1.s.1.w.3" t="begroette" />
77 </su>
78 <su xml:id="example.p.1.s.1.su.1_1_3" class="pron">
79 <wref id="example.p.1.s.1.w.4" t="hem" />
80 </su>
81 </su>
82 <su xml:id="example.p.1.s.1.su.1_2" class="punct">
83 <wref id="example.p.1.s.1.w.5" t="." />
84 </su>
85 </su>
86 </syntax>
87 </s>
88 </p>
89 </text>
90 </FoLiA>

4.4.5 Time Segmentation

FoLiA supports time segmentation to allow for more fine-grained control of timing information by associating
spans of words/tokens with exact timestamps. It can provide a more linguistic alternative to Event Annotation.

Specification

Annotation Category Span Annotation
Declaration <timesegment-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since v0.8 but renamed since v0.9
Element <timesegment>

API Class TimeSegment (FoLiApy API Reference)
Layer Element <timing>

Span Role Elements

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not

4.4. Span Annotation 141

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TimeSegment.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <timing> (Time Segmentation)
Feature subsets (extra attributes)

• actor

• begindatetime

142 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• enddatetime

Explanation

FoLiA supports time segmentation using the <timing> layer and the <timesegment> span annotation ele-
ment. This element is useful for speech, but can also be used for event annotation. We already saw events
as structure annotation in Event Annotation, but for more fine-grained control of timing information a span
annotation element in an offset layer is more suited.
Time segments may also be nested. The predefined and optional feature subset begindatetime and
enddatetime can be used express the exact moment at which an event started or ended. These too are
set-defined so the format shown here is just an example.
If you are only interested in a structural annotation of events, and a coarser level of annotation suffices, then
use :ref̋:event_annotation.
If used in a speech context, all the generic speech attributes become available (See speech). This introduces
begintime and endtime, which are different from the begindatetime and enddatetime feature subsets
introduced by this annotation type! The generic attributes begintime and endtime are not defined by a set,
but specify a time location in HH:MM:SS.MMM format which may refer to the location in an associated audio
file. Audio files are associated using the src attribute, which is inherited by all lower elements, so we put it
on the sentence here.
See also:

• Event Annotation
• speech

Example

The following example illustrates the usage of time segmentation for event annotation:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <timesegment-annotation set="events"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </timesegment-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">

(continues on next page)

4.4. Span Annotation 143

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

26 <p xml:id="example.p.1">
27 <s xml:id="example.p.1.s.1">
28 <w xml:id="example.p.1.s.1.w.1"><t>I</t></w>
29 <w xml:id="example.p.1.s.1.w.2"><t>think</t></w>
30 <w xml:id="example.p.1.s.1.w.3"><t>I</t></w>
31 <w xml:id="example.p.1.s.1.w.4"><t>have</t></w>
32 <w xml:id="example.p.1.s.1.w.5"><t>to</t></w>
33 <w xml:id="example.p.1.s.1.w.6"><t>go</t></w>
34 <w xml:id="example.p.1.s.1.w.7"><t>.</t></w>
35 <timing>
36 <timesegment class="utterance" begindatetime="2011-12-15T19:01"
37 enddatetime="2011-12-15T19:03" actor="myself">
38 <wref id="example.p.1.s.1.w.1" t="I" />
39 <wref id="example.p.1.s.1.w.2" t="think" />
40 </timesegment>
41 <timesegment class="cough" begindatetime="2011-12-15T19:03"
42 enddatetime="2011-12-15T19:05" actor="myself">
43 </timesegment>
44 <timesegment class="utterance" begindatetime="2011-12-15T19:05"
45 enddatetime="2011-12-15T19:06" actor="myself">
46 <wref id="example.p.1.s.1.w.3" t="I" />
47 <wref id="example.p.1.s.1.w.4" t="have" />
48 <wref id="example.p.1.s.1.w.5" t="to" />
49 <wref id="example.p.1.s.1.w.6" t="go" />
50 </timesegment>
51 </timing>
52 </s>
53 </p>
54 </text>
55 </FoLiA>

Example in a speech context

The following example illustrates the usage of time segmentation in a speech context. You have to be
aware though, that the begintime and endtime attributes can also be directly associated with any structure
elements in a speech context, making the use of this annotation type unnecessary or redundant if used this
way.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <utterance-annotation>
12 <annotator processor="p1" />
13 </utterance-annotation>
14 <timesegment-annotation set="events"> <!-- an ad-hoc set -->
15 <annotator processor="p1" />
16 </timesegment-annotation>

(continues on next page)

144 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <speech xml:id="example.speech">
23 <utt src="ithinkihavetogo.mp3">
24 <w xml:id="example.utt.1.w.1"><t>I</t></w>
25 <w xml:id="example.utt.1.w.2"><t>think</t></w>
26 <w xml:id="example.utt.1.w.3"><t>I</t></w>
27 <w xml:id="example.utt.1.w.4"><t>have</t></w>
28 <w xml:id="example.utt.1.w.5"><t>to</t></w>
29 <w xml:id="example.utt.1.w.6"><t>go</t></w>
30 <w xml:id="example.utt.1.w.7"><t>.</t></w>
31 <timing>
32 <timesegment begintime="00:00:00.000" endtime="00:00:00.250">
33 <wref id="example.utt.1.w.1" t="I" />
34 </timesegment>
35 <timesegment begintime="00:00:00.250" endtime="00:00:00.500">
36 <wref id="example.utt.1.w.2" t="think" />
37 </timesegment>
38 <timesegment begintime="00:00:00.500" endtime="00:00:00.750">
39 <wref id="example.utt.1.w.3" t="I" />
40 </timesegment>
41 <timesegment begintime="00:00:00.750" endtime="00:00:01.000">
42 <wref id="example.utt.1.w.4" t="have" />
43 </timesegment>
44 <timesegment begintime="00:00:01.000" endtime="00:00:01.250">
45 <wref id="example.utt.1.w.5" t="to" />
46 </timesegment>
47 <timesegment begintime="00:00:01.250" endtime="00:00:01.500">
48 <wref id="example.utt.1.w.6" t="go" />
49 </timesegment>
50 </timing>
51 </utt>
52 </speech>
53 </FoLiA>

4.4.6 Coreference Annotation

Relations between words that refer to the same referent (anaphora) are expressed in FoLiA using Coreference
Annotation. The co-reference relations are expressed by specifying the entire chain in which all links are
coreferent.

Specification

Annotation Category Span Annotation
Declaration <coreference-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History since v0.9
Element <coreferencechain>

API Class CoreferenceChain (FoLiApy API Reference)

4.4. Span Annotation 145

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.CoreferenceChain.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Layer Element <coreferences>

Span Role Elements <coreferencelink> (CoreferenceLink)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they

146 Chapter 4. Annotation Types

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <coreferencelink> (Coreference Anno-
tation), <desc> (Description Annotation), <metric> (Metric Annotation), <relation>
(Relation Annotation)

Valid Context <coreferences> (Coreference Annotation)

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

Relations between words that refer to the same referent are expressed in FoLiA using the <coreferencechain>
span annotation element and the <coreferencelink> span role within it for each instance.
The co-reference relations are expressed by specifying the entire chain in which all links are coreferent. The
head of a coreferent may optionally be marked with the <hd> element, another span role.
As always, this annotation layer itself may be embedded on whatever level is preferred. The following example
uses paragraph level, but you can for instance also embed it at sentence level or a global text level:
The coreferencelink may take three attributes, which are actually predefined feature subsets (See Fea-
tures), their values depend on the set used and are thus user-definable and never predefined:

• mod - A subset that can be used to indicate that there is modality or negation in this coreference link.
• time - A subset used to indicate a time dependency. An example of a time dependency is seen in the

sentence: “Bert De Graeve, until recently CEO, will now take up a position as CFO”. Here
“Bert De Graeve”, “CEO” and “CFO” would all be part of the same coreference chain, and the second
coreferencelink (“CEO”) can be marked as being in the past using the “time” attribute. * level - A subset
used that can indicate the level on which the coreference holds. A possible value suggestion could be sense,
indicating that only on sense-level there is a coreference relation, as opposed to an actual reference.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <coreference-annotation set="adhoc"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </coreference-annotation>

(continues on next page)

4.4. Span Annotation 147

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <p xml:id="example.p.1">
27 <s xml:id="example.p.1.s.1">
28 <t>The Dalai Lama greeted him.</t>
29 <w xml:id="example.p.1.s.1.w.1"><t>The</t></w>
30 <w xml:id="example.p.1.s.1.w.2"><t>Dalai</t></w>
31 <w xml:id="example.p.1.s.1.w.3"><t>Lama</t></w>
32 <w xml:id="example.p.1.s.1.w.4"><t>greeted</t></w>
33 <w xml:id="example.p.1.s.1.w.5" space="no"><t>him</t></w>
34 <w xml:id="example.p.1.s.1.w.6"><t>.</t></w>
35 </s>
36 <s xml:id="example.p.1.s.2">
37 <t>He was happy to see him.</t>
38 <w xml:id="example.p.1.s.2.w.1"><t>He</t></w>
39 <w xml:id="example.p.1.s.2.w.2"><t>was</t></w>
40 <w xml:id="example.p.1.s.2.w.3"><t>happy</t></w>
41 <w xml:id="example.p.1.s.2.w.4"><t>to</t></w>
42 <w xml:id="example.p.1.s.2.w.5"><t>see</t></w>
43 <w xml:id="example.p.1.s.2.w.6" space="no"><t>him</t></w>
44 <w xml:id="example.p.1.s.2.w.7"><t>.</t></w>
45 </s>
46 <s xml:id="example.p.1.s.3">
47 <t>He smiled.</t>
48 <w xml:id="example.p.1.s.3.w.1"><t>He</t></w>
49 <w xml:id="example.p.1.s.3.w.2" space="no"><t>smiled</t></w>
50 <w xml:id="example.p.1.s.3.w.3"><t>.</t></w>
51 </s>
52 <coreferences>
53 <coreferencechain class="dalailama">
54 <coreferencelink>
55 <wref id="example.p.1.s.1.w.1" t="The" />
56 <hd> <!-- extra span role to mark the head -->
57 <wref id="example.p.1.s.1.w.2" t="Dalai" />
58 <wref id="example.p.1.s.1.w.3" t="Lama" />
59 </hd>
60 </coreferencelink>
61 <coreferencelink>
62 <wref id="example.p.1.s.2.w.1" t="he" />
63 </coreferencelink>
64 </coreferencechain>
65 <coreferencechain class="dalailama">
66 <coreferencelink>
67 <wref id="example.p.1.s.1.w.5" t="him" />
68 </coreferencelink>
69 <coreferencelink>
70 <wref id="example.p.1.s.2.w.6" t="him" />
71 </coreferencelink>
72 <coreferencelink>
73 <wref id="example.p.1.s.3.w.1" t="He" />
74 </coreferencelink>
75 </coreferencechain>

(continues on next page)

148 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

76 </coreferences>
77 </p>
78 </text>
79 </FoLiA>

4.4.7 Semantic Role Annotation

This span annotation type allows for the expression of semantic roles, or thematic roles. It is often used
together with Predicate Annotation

Specification

Annotation Category Span Annotation
Declaration <semrole-annotation set="..."> (note: set is mandatory)
Version History since v0.9, revised since v1.3 (added predicates)
Element <semrole>

API Class SemanticRole (FoLiApy API Reference)
Layer Element <semroles>

Span Role Elements <hd> (Headspan)
Required Attributes

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

4.4. Span Annotation 149

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.SemanticRole.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <predicate> (Predicate Annotation), <semroles> (Semantic Role Annotation)

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

Semantic roles are usually embedded within the <predicate> span annotation element (see Predicate Anno-
tation, since FoLiA v1.3). This is a separate span annotation element, which itself may also take a class and
has its own declaration. Such a class can for instance be used to describe frame semantics, such as FrameNet.
Semantic roles without predicates are also allowed, but less expressive as relations between the semantic roles
are not explicit. The reverse also hold, you can do predicate annotation without semantic role labelling.
See also:

Predicate Annotation

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>

(continues on next page)

150 Chapter 4. Annotation Types

https://framenet.icsi.berkeley.edu/fndrupal/

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <semrole-annotation set="semroleset"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </semrole-annotation>
20 <predicate-annotation set="semroleset"> <!-- an ad-hoc set -->
21 <annotator processor="p1" />
22 </predicate-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <p xml:id="example.p.1">
30 <s xml:id="example.p.1.s.1">
31 <t>The Dalai Lama greeted him.</t>
32 <w xml:id="example.p.1.s.1.w.1"><t>The</t></w>
33 <w xml:id="example.p.1.s.1.w.2"><t>Dalai</t></w>
34 <w xml:id="example.p.1.s.1.w.3"><t>Lama</t></w>
35 <w xml:id="example.p.1.s.1.w.4"><t>greeted</t></w>
36 <w xml:id="example.p.1.s.1.w.5" space="no"><t>him</t></w>
37 <w xml:id="example.p.1.s.1.w.6"><t>.</t></w>
38 <semroles>
39 <predicate class="greet">
40 <semrole class="agent">
41 <wref id="example.p.1.s.1.w.2" />
42 <wref id="example.p.1.s.1.w.3" />
43 </semrole>
44 <semrole class="patient">
45 <wref id="example.p.1.s.1.w.5" />
46 </semrole>
47 </predicate>
48 </semroles>
49 </s>
50 </p>
51 </text>
52 </FoLiA>

4.4.8 Predicate Annotation

Allows annotation of predicates, this annotation type is usually used together with Semantic Role Annotation.
The types of predicates are defined by a user-defined set definition.

4.4. Span Annotation 151

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Specification

Annotation Category Span Annotation
Declaration <predicate-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History since v1.3
Element <predicate>

API Class Predicate (FoLiApy API Reference)
Layer Element <None>

Span Role Elements

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

152 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Predicate.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation), <semrole> (Semantic
Role Annotation)

Valid Context <semroles> (Semantic Role Annotation)

Explanation

Please see Semantic Role Annotation for an explanation of predicates in the context of semantic role labelling.

4.4.9 Observation Annotation

Observation annotation is used to make an observation pertaining to one or more word tokens. Observations
offer a an external qualification on part of a text. The qualification is expressed by the class, in turn defined
by a set. The precise semantics of the observation depends on the user-defined set.

Specification

Annotation Category Span Annotation
Declaration <observation-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History since v1.3
Element <observation>

API Class Observation (FoLiApy API Reference)
Layer Element <observations>

Span Role Elements

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

4.4. Span Annotation 153

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Observation.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <observations> (Observation Annotation)

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

The <observation> element is a span annotation element that makes an observation pertaining to one or
more word tokens. It is embedded in an observations layer.
Observations offer a an external qualification on part of a text. The qualification is expressed by the class, in
turn defined by a set. The precise semantics of the observation depends on the user-defined set.

154 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

The element may for example act to mark errors in the text or to capture observations from teach-
ers/proofreaders.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <observation-annotation set="errordetection"> <!-- an ad-hoc set -->
18 <annotator processor="p2" />
19 </observation-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="student" type="manual" />
23 <processor xml:id="p2" name="teacher" type="manual" />
24 </provenance>
25 </metadata>
26 <text xml:id="example.text">
27 <p xml:id="example.p.1">
28 <s xml:id="example.p.1.s.1">
29 <t>The Dalai Lama greated him.</t>
30 <w xml:id="example.p.1.s.1.w.1"><t>The</t></w>
31 <w xml:id="example.p.1.s.1.w.2"><t>Dalai</t></w>
32 <w xml:id="example.p.1.s.1.w.3"><t>Lama</t></w>
33 <w xml:id="example.p.1.s.1.w.4"><t>greated</t></w>
34 <w xml:id="example.p.1.s.1.w.5" space="no"><t>him</t></w>
35 <w xml:id="example.p.1.s.1.w.6"><t>.</t></w>
36 <observations>
37 <observation class="typo">
38 <wref id="example.p.1.s.1.w.4"/>
39 </observation>
40 </observations>
41 </s>
42 </p>
43 </text>
44 </FoLiA>

4.4.10 Sentiment Annotation

Sentiment analysis marks subjective information such as sentiments or attitudes expressed in text. The
sentiments/attitudes are defined by a user-defined set definition.

4.4. Span Annotation 155

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Note: This annotation type is deprecated because it overlaps with modality annotation (_modal-
ity_annotation). Modality annotation is now preferred over sentiment annotation, as it is more generic.

Specification

Annotation Category Span Annotation
Declaration <sentiment-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History since v1.3
Element <sentiment>

API Class Sentiment (FoLiApy API Reference)
Layer Element <sentiments>

Span Role Elements <hd> (Headspan), <source> (Source), <target> (Target)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.

156 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Sentiment.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <sentiments> (Sentiment Annotation)
Feature subsets (extra attributes)

• polarity

• strength

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

Sentiment analysis marks subjective information such as sentiments or attitudes expressed in text. The
<sentiment> span annotation element is used to this end. It is embedded in a <sentiments> layer.
The <sentiment> element takes the following span roles:

• <hd> – (required) – The head of the sentiment; expresses the actual sentiment, it covers word spans
such as ‘‘happy’’, ‘‘very satisfied’’, ‘‘highly dissappointed’’.

• <source> – (optional) – The source/holder of the sentiment, assuming it is explicitly expressed in the
text.

• <target> – (optional) – The target/recipient of the sentiment, assuming it is explicitly expressed in
the text.

The following feature subsets are predefined (see Features), whether they are actually used depends on the
set, their values (classes) are set-dependent as well:

• polarity – Expresses the whether the sentiment is positive, neutral or negative.
• strength – Expresses the strength or intensity of the sentiment.

Besides these predefined features, FoLiA’s feature mechanism can be used to associate other custom properties
with any sentiment.

4.4. Span Annotation 157

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <sentiment-annotation set="sentiments"> <!-- an ad-hoc set -->
15 <annotator processor="p1" />
16 </sentiment-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <s xml:id="s1">
24 <w xml:id="s1.w1"><t>He</t></w>
25 <w xml:id="s1.w2"><t>is</t></w>
26 <w xml:id="s1.w3"><t>happy</t></w>
27 <w xml:id="s1.w4"><t>to</t></w>
28 <w xml:id="s1.w5"><t>see</t></w>
29 <w xml:id="s1.w6"><t>him</t></w>
30 <w xml:id="s1.w7"><t>.</t></w>
31 <sentiments>
32 <sentiment class="emotion.joy" polarity="positive" strength="moderate">
33 <source>
34 <wref id="s1.w1" t="he" />
35 </source>
36 <target>
37 <wref id="s1.w6" t="him" />
38 </target>
39 <hd>
40 <wref id="s1.w3" t="happy" />
41 </hd>
42 </sentiment>
43 </sentiments>
44 </s>
45 </text>
46 </FoLiA>

4.4.11 Statement Annotation

Statement annotation, sometimes also refered to as attribution, allows to decompose statements into the
source of the statement, the content of the statement, and the way these relate, provided these are made
explicit in the text.

158 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Specification

Annotation Category Span Annotation
Declaration <statement-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History since v1.3
Element <statement>

API Class Statement (FoLiApy API Reference)
Layer Element <statements>

Span Role Elements <hd> (Headspan), <source> (Source), <rel> (StatementRelation)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

4.4. Span Annotation 159

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Statement.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <statements> (Statement Annotation)

Explanation

The span annotation element <statement> allows to decompose statements into the source of the statement,
the content of the statement, and the way these relate, provided these are made explicit in the text. It can be
used to annotate attribution (who said what etc). The element is used in a <statements> layer and takes
the following span roles:

• <hd> – (required) – The head of the statement is the actual content of the statement; this role spans
the words containing the statement.

• <source> – (optional) – The source/holder of the statement, assuming it is explicitly expressed in the
text.

• <rel> – (optional) – The relation between the source of the statement and the statement, this usually
encompasses verbs like “to say”, “to think”, or prepositional phrases such as “according to”. (not to be
confused with Relation Annotation)

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <statement-annotation set="attributionset"> <!-- an ad-hoc set -->
18 <annotator processor="p1" />
19 </statement-annotation>
20 </annotations>
21 <provenance>

(continues on next page)

160 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <s xml:id="s1">
27 <w xml:id="s1.w1"><t>They</t></w>
28 <w xml:id="s1.w2"><t>said</t></w>
29 <w xml:id="s1.w3"><t>the</t></w>
30 <w xml:id="s1.w4"><t>hotel</t></w>
31 <w xml:id="s1.w5"><t>was</t></w>
32 <w xml:id="s1.w6"><t>a</t></w>
33 <w xml:id="s1.w7"><t>nightmare</t></w>
34 <w xml:id="s1.w8"><t>.</t></w>
35 <statements>
36 <statement class="said">
37 <source>
38 <wref id="s1.w1" />
39 </source>
40 <hd>
41 <wref id="s1.w3" />
42 <wref id="s1.w4" />
43 <wref id="s1.w5" />
44 <wref id="s1.w6" />
45 <wref id="s1.w7" />
46 </hd>
47 <rel>
48 <wref id="s1.w2" />
49 </rel>
50 </statement>
51 </statements>
52 </s>
53 </text>
54 </FoLiA>

4.4.12 Modality Annotation

Modality annotation is used to describe the relationship between cue word(s) and the scope it covers. It
is primarily used for the annotation of negation, but also for the annotation of factuality, certainty and
truthfulness:.

Note: This annotation type has overlap with sentiment annotation (_sentiment_annotation). Modality
annotation is now preferred over sentiment annotation, as it is more generic.

Specification

Annotation Category Span Annotation
Declaration <modality-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since v2.4.0
Element <modality>

API Class Modality (FoLiApy API Reference)

4.4. Span Annotation 161

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Modality.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Layer Element <modalities>

Span Role Elements <cue> (Cue), <scope> (Scope), <source> (Source), <target>
(Target)

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they

162 Chapter 4. Annotation Types

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),
<metric> (Metric Annotation), <relation> (Relation Annotation)

Valid Context <modalities> (Modality Annotation)
Feature subsets (extra attributes)

• polarity

• strength

Explanation

Note: Please first ensure you are familiar with the general principles of Span Annotation to make sense of
this annotation type.

Modality analysis marks things such as sentiments, truthfulness, negation, doubt. The <modality> span
annotation element is used to this end. It is embedded in a <modalities> layer.
The <modalities> element takes the following span roles:

• <cue> – (required) – The cue or trigger of the modality. In case of sentiments, this expresses the actual
sentiment and could cover word spans such as “happy”, “very satisfied”, “highly dissappointed”. This
may also be nested inside <scope>.

• <scope> – (optional) – The scope of the modality. In case of negation for example, this covers the text
that is negated.

• <source> – (optional) – The source/holder of the modality, assuming it is explicitly expressed in the
text. This may also be nested inside <scope>.

• <target> – (optional) – The target/recipient of the modality, assuming it is explicitly expressed in the
text. This may also be nested inside <scope>.

The following feature subsets are predefined (see Features), whether they are actually used depends on the
set, their values (classes) are set-dependent as well:

• polarity – Expresses the whether the sentiment is positive, neutral or negative.
• strength – Expresses the strength or intensity of the sentiment.

Besides these predefined features, FoLiA’s feature mechanism can be used to associate other custom properties
with any sentiment.

Example

An example of sentiment analysis:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

(continues on next page)

4.4. Span Annotation 163

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <modality-annotation set="sentiments"> <!-- an ad-hoc set -->
15 <annotator processor="p1" />
16 </modality-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <s xml:id="s1">
24 <w xml:id="s1.w1"><t>He</t></w>
25 <w xml:id="s1.w2"><t>is</t></w>
26 <w xml:id="s1.w3"><t>happy</t></w>
27 <w xml:id="s1.w4"><t>to</t></w>
28 <w xml:id="s1.w5"><t>see</t></w>
29 <w xml:id="s1.w6"><t>him</t></w>
30 <w xml:id="s1.w7"><t>.</t></w>
31 <modalities>
32 <modality class="emotion.joy" polarity="positive" strength="moderate">
33 <source>
34 <wref id="s1.w1" t="he" />
35 </source>
36 <target>
37 <wref id="s1.w6" t="him" />
38 </target>
39 <cue>
40 <wref id="s1.w3" t="happy" />
41 </cue>
42 </modality>
43 </modalities>
44 </s>
45 </text>
46 </FoLiA>

An example of negation annotation:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <modality-annotation set="modalities"> <!-- an ad-hoc set -->
15 <annotator processor="p1" />

(continues on next page)

164 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

16 </modality-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <s xml:id="s1">
24 <w xml:id="s1.w1"><t>I</t></w>
25 <w xml:id="s1.w2"><t>did</t></w>
26 <w xml:id="s1.w3"><t>not</t></w>
27 <w xml:id="s1.w4"><t>know</t></w>
28 <w xml:id="s1.w5"><t>who</t></w>
29 <w xml:id="s1.w6"><t>you</t></w>
30 <w xml:id="s1.w7"><t>were</t></w>
31 <modalities>
32 <modality class="negation">
33 <cue>
34 <wref id="s1.w3" t="not" />
35 </cue>
36 <scope>
37 <wref id="s1.w1" t="I" />
38 <wref id="s1.w2" t="did" />
39 <wref id="s1.w4" t="know" />
40 <wref id="s1.w5" t="who" />
41 <wref id="s1.w6" t="you" />
42 <wref id="s1.w7" t="were" />
43 </scope>
44 </modality>
45 </modalities>
46 </s>
47 </text>
48 </FoLiA>

4.4.13 Group Annotations: Inline Annotations on Span Annotations

It is possible to directly apply inline annotations (see Inline Annotation) to span annotations, which allows
for example to assign a part-of-speech tag or lemma directly to an entity, rather than to a word (<w>) as is
customary. This functionality, however, needs to be explicitly enabled by adding the groupannotations=yes
attribute to the declaration, as it adds extra complexity to a FoLiA document and in this way informs parsers
to be aware of this.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />

(continues on next page)

4.4. Span Annotation 165

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 <entity-annotation groupannotations="yes">
18 <annotator processor="p1" />
19 </entity-annotation>
20 <pos-annotation set="brown"> <!-- This is an ad-hoc set declaration as it␣

↪→is no URL and therefore not really defined -->
21 <annotator processor="p1" />
22 </pos-annotation>
23 <lemma-annotation set="english-adhoc"> <!-- This is an ad-hoc set␣

↪→declaration as it is no URL and therefore not really defined -->
24 <annotator processor="p1" />
25 </lemma-annotation>
26 </annotations>
27 <provenance>
28 <processor xml:id="p1" name="proycon" type="manual" />
29 </provenance>
30 </metadata>
31 <text xml:id="example.text">
32 <p xml:id="example.p.1">
33 <s xml:id="example.p.1.s.1">
34 <t>The container-ship lost its cargo of bottle openers.</t>
35 <w xml:id="example.p.1.s.1.w.1" class="WORD">
36 <t>The</t>
37 <pos class="AT" />
38 </w>
39 <w xml:id="example.p.1.s.1.w.2" class="WORD" space="no">
40 <t>container</t>
41 </w>
42 <w xml:id="example.p.1.s.1.w.3" class="WORD" space="no">
43 <t>-</t>
44 </w>
45 <w xml:id="example.p.1.s.1.w.4" class="WORD">
46 <t>ship</t>
47 </w>
48 <w xml:id="example.p.1.s.1.w.5" class="WORD">
49 <t>lost</t>
50 <pos class="VBD" />
51 </w>
52 <w xml:id="example.p.1.s.1.w.6" class="WORD">
53 <t>its</t>
54 <pos class="PP$" />
55 </w>
56 <w xml:id="example.p.1.s.1.w.7" class="WORD">
57 <t>cargo</t>
58 <pos class="NN" />
59 </w>
60 <w xml:id="example.p.1.s.1.w.8" class="WORD">
61 <t>of</t>
62 <pos class="IN" />
63 </w>
64 <w xml:id="example.p.1.s.1.w.9" class="WORD">
65 <t>bottle</t>
66 </w>

(continues on next page)

166 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

67 <w xml:id="example.p.1.s.1.w.10" class="WORD" space="no">
68 <t>openers</t>
69 </w>
70 <w xml:id="example.p.1.s.1.w.11" class="PUNCTUATION">
71 <t>.</t>
72 </w>
73 <entities>
74 <entity xml:id="example.p.1.s.1.entity.1">
75 <wref id="example.p.1.s.1.w.2" t="container" />
76 <wref id="example.p.1.s.1.w.3" t="-" />
77 <wref id="example.p.1.s.1.w.4" t="ship" />
78 <pos class="NN" />
79 <lemma class="container-ship" />
80 </entity>
81 <entity xml:id="example.p.1.s.1.entity.2">
82 <wref id="example.p.1.s.1.w.9" t="bottle" />
83 <wref id="example.p.1.s.1.w.10" t="openers" />
84 <pos class="NNS" />
85 <lemma class="bottle opener" />
86 </entity>
87 </entities>
88 </s>
89 </p>
90 </text>
91 </FoLiA>

4.5 Structure Annotation

This category encompasses annotation types that define the structure of a document, e.g. paragraphs, sen-
tences, words, sections like chapters, lists, tables, etc… These types are not strictly considered linguistic
annotation and equivalents are also commonly found in other document formats such as HTML, TEI, Mark-
Down, LaTeX, and others. For FoLiA it provides the necessary structural basis that linguistic annotation can
build on.
FoLiA defines the following types of structure annotation:

• Structure Annotation – This category encompasses annotation types that define the structure of a
document, e.g. paragraphs, sentences, words, sections like chapters, lists, tables, etc… These types
are not strictly considered linguistic annotation and equivalents are also commonly found in other
document formats such as HTML, TEI, MarkDown, LaTeX, and others. For FoLiA it provides the
necessary structural basis that linguistic annotation can build on.

– Token Annotation – <w> – This annotation type introduces a tokenisation layer for the document.
The terms token and word are used interchangeably in FoLiA as FoLiA itself does not commit
to a specific tokenisation paradigm. Tokenisation is a prerequisite for the majority of linguistic
annotation types offered by FoLiA and it is one of the most fundamental types of Structure
Annotation. The words/tokens are typically embedded in other types of structure elements, such
as sentences or paragraphs.

– Division Annotation – <div> – Structure annotation representing some kind of division, typically
used for chapters, sections, subsections (up to the set definition). Divisions may be nested at will,
and may include almost all kinds of other structure elements.

– Paragraph Annotation – <p> – Represents a paragraph and holds further structure annotation such
as sentences.

– Head Annotation – <head> – The head element is used to provide a header or title for the structure
element in which it is embedded, usually a division (<div>)

4.5. Structure Annotation 167

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

– List Annotation – <list> – Structure annotation for enumeration/itemisation, e.g. bulleted lists.
– Figure Annotation – <figure> – Structure annotation for including pictures, optionally captioned,

in documents.
– Vertical Whitespace – <whitespace> – Structure annotation introducing vertical whitespace
– Linebreak –
 – Structure annotation representing a single linebreak and with special facilities

to denote pagebreaks.
– Sentence Annotation – <s> – Structure annotation representing a sentence. Sentence detection is

a common stage in NLP alongside tokenisation.
– Event Annotation – <event> – Structural annotation type representing events, often used in new

media contexts for things such as tweets, chat messages and forum posts (as defined by a user-
defined set definition). Note that a more linguistic kind of event annotation can be accomplished
with Entity Annotation or even Time Segmentation rather than this one.

– Quote Annotation – <quote> – Structural annotation used to explicitly mark quoted speech, i.e.
that what is reported to be said and appears in the text in some form of quotation marks.

– Note Annotation – <note> – Structural annotation used for notes, such as footnotes or warnings
or notice blocks.

– Reference Annotation – <ref> – Structural annotation for referring to other annotation types.
Used e.g. for referring to bibliography entries (citations) and footnotes.

– Table Annotation – <table> – Structural annotation type for creating a simple tabular environ-
ment, i.e. a table with rows, columns and cells and an optional header.

– Part Annotation – <part> – The structure element part is a fairly abstract structure element
that should only be used when a more specific structure element is not available. Most notably,
the part element should never be used for representation of morphemes or phonemes! Part can be
used to divide a larger structure element, such as a division, or a paragraph into arbitrary subparts.

– Utterance Annotation – <utt> – An utterance is a structure element that may consist of words
or sentences, which in turn may contain words. The opposite is also true, a sentence may consist
of multiple utterances. Utterances are often used in the absence of sentences in a speech context,
where neat grammatical sentences can not always be distinguished.

– Entry Annotation – <entry> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Term Annotation – <term> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Definition Annotation – <def> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Entry annotation defines the
entries in such collections, Term annotation defines the terms, and Definition Annotation provides
the definitions.

– Example Annotation – <ex> – FoLiA has a set of structure elements that can be used to represent
collections such as glossaries, dictionaries, thesauri, and wordnets. Examples annotation defines
examples in such collections.

– Hidden Token Annotation – <hiddenw> – This annotation type allows for a hidden token layer in
the document. Hidden tokens are ignored for most intents and purposes but may serve a purpose
when annotations on implicit tokens is required, for example as targets for syntactic movement
annotation.

168 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.5.1 Token Annotation

This annotation type introduces a tokenisation layer for the document. The terms token and word are used
interchangeably in FoLiA as FoLiA itself does not commit to a specific tokenisation paradigm. Tokenisation
is a prerequisite for the majority of linguistic annotation types offered by FoLiA and it is one of the most
fundamental types of Structure Annotation. The words/tokens are typically embedded in other types of
structure elements, such as sentences or paragraphs.

Specification

Annotation Category Structure Annotation
Declaration <token-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <w>

API Class Word (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

4.5. Structure Annotation 169

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Word.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <metric> (Metric Annotation),
<part> (Part Annotation), <ph> (Phonetic Annotation/Content), <ref> (Reference Anno-
tation), <relation> (Relation Annotation), <str> (String Annotation), <t> (Text Anno-
tation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <head> (Head Annotation), <note> (Note An-
notation), <p> (Paragraph Annotation), <quote> (Quote Annotation), <ref> (Reference
Annotation), <s> (Sentence Annotation), <term> (Term Annotation), <utt> (Utterance
Annotation)

Explanation

Tokenisation is a prerequisite for most forms of linguistic annotation. The <w> element is FoLiA’s basic token
or word (hence the element’s name). This element occurs in the scope of wider structural elements such as
<s> (Sentence Annotation)

Note: This element carries an extra and optional space attribute with value yes (default), or no, indicating
whether a space follows between this token and the next one. This attribute is used to reconstruct the
untokenised text.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
(continues on next page)

170 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <p xml:id="example.p.1">
24 <s xml:id="example.p.1.s.1">
25 <w xml:id="example.p.1.s.1.w.1" class="WORD">
26 <t>Hello</t>
27 </w>
28 <w xml:id="example.p.1.s.1.w.2" class="WORD" space="no">
29 <t>World</t>
30 </w>
31 <w xml:id="example.p.1.s.1.w.3" class="PUNCTUATION">
32 <t>!</t>
33 </w>
34 </s>
35 <s xml:id="example.p.1.s.2">
36 <w xml:id="example.p.1.s.2.w.1" class="WORD">
37 <t>This</t>
38 </w>
39 <w xml:id="example.p.1.s.2.w.2" class="WORD">
40 <t>is</t>
41 </w>
42 <w xml:id="example.p.1.s.2.w.3" class="WORD">
43 <t>an</t>
44 </w>
45 <w xml:id="example.p.1.s.2.w.4" class="WORD" space="no">
46 <t>example</t>
47 </w>
48 <w xml:id="example.p.1.s.2.w.5" class="PUNCTUATION">
49 <t>.</t>
50 </w>
51 </s>
52 </p>
53 </text>
54 </FoLiA>

4.5.2 Division Annotation

Structure annotation representing some kind of division, typically used for chapters, sections, subsections (up
to the set definition). Divisions may be nested at will, and may include almost all kinds of other structure
elements.

4.5. Structure Annotation 171

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Specification

Annotation Category Structure Annotation
Declaration <division-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <div>

API Class Division (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

172 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Division.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <div> (Division Annotation), <entry> (Entry Annotation), <event>
(Event Annotation), <ex> (Example Annotation), <external> (External Annotation),
<figure> (Figure Annotation), <gap> (Gap Annotation), <head> (Head Annotation),

(Linebreak), <list> (List Annotation), <metric> (Metric Annotation), <note> (Note An-
notation), <p> (Paragraph Annotation), <part> (Part Annotation), <ph> (Phonetic Annota-
tion/Content), <quote> (Quote Annotation), <ref> (Reference Annotation), <relation>
(Relation Annotation), <s> (Sentence Annotation), <table> (Table Annotation), <t> (Text
Annotation), <utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w>
(Token Annotation)

Valid Context <div> (Division Annotation), <event> (Event Annotation), <quote> (Quote
Annotation)

Set Definitions You can use any of the following exist-
ing set definitions or simply create your own: *
‘https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/divisions.foliaset.xml‘_

Description & Examples

The structure element <div> is used to create divisions and subdivisions within a text.
Each division may be of a particular class pertaining to a set defining all possible classes, common classes for
this annotation type would be chapter, section, subsection. A set, however, is not mandatory for most types
of structure, so divisions may be set-less.
Divisions and other structural units are often numbered, think for example of chapters and sections. The
number, as it was in the source document, can be encoded in the n attribute of the structure annotation
element.
Divisions should never be used for marking paragraphs, sentences or other smaller structural entities for which
FoLiA provides explicit structural element. Divisions only cover large structures.
The following example shows a FoLiA document with structured divisions with headers and paragraphs. It
does not provide any further tokenisation.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
(continues on next page)

4.5. Structure Annotation 173

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

11 <head-annotation>
12 <annotator processor="p1" />
13 </head-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <div xml:id="example.div.1" class="chapter" n="1">
24 <head>
25 <t>Chapter 1: In the beginning</t>
26 </head>
27 <div xml:id="example.div.1.1" class="section" n="1.1">
28 <head>
29 <t>Section 1.1: The first steps</t>
30 </head>
31 <p xml:id="example.div.1.1.p.1">
32 <t>And so the first paragraph commences...</t>
33 </p>
34 </div>
35 </div>
36 </text>
37 </FoLiA>

4.5.3 Paragraph Annotation

Represents a paragraph and holds further structure annotation such as sentences.

Specification

Annotation Category Structure Annotation
Declaration <paragraph-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <p>

API Class Paragraph (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

174 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Paragraph.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <entry> (Entry Annotation), <event> (Event Annotation), <ex>
(Example Annotation), <external> (External Annotation), <figure> (Figure Annota-
tion), <gap> (Gap Annotation), <head> (Head Annotation), <hiddenw> (Hidden Token
Annotation),
 (Linebreak), <list> (List Annotation), <metric> (Metric Annota-
tion), <note> (Note Annotation), <part> (Part Annotation), <ph> (Phonetic Annota-
tion/Content), <quote> (Quote Annotation), <ref> (Reference Annotation), <relation>
(Relation Annotation), <s> (Sentence Annotation), <str> (String Annotation), <t> (Text
Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annotation)

4.5. Structure Annotation 175

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <head> (Head Annotation), <note> (Note An-
notation), <quote> (Quote Annotation), <ref> (Reference Annotation), <term> (Term
Annotation)

Explanation & Examples

Paragraphs are a very common structural element and their use is encouraged. The following example shows
a single paragraph within a structure of divisions with headers, it does not provide any deeper tokenisation.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <head-annotation>
12 <annotator processor="p1" />
13 </head-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <div xml:id="example.div.1" class="chapter" n="1">
24 <head>
25 <t>Chapter 1: In the beginning</t>
26 </head>
27 <div xml:id="example.div.1.1" class="section" n="1.1">
28 <head>
29 <t>Section 1.1: The first steps</t>
30 </head>
31 <p xml:id="example.div.1.1.p.1">
32 <t>And so the first paragraph commences...</t>
33 </p>
34 </div>
35 </div>
36 </text>
37 </FoLiA>

The next example shows a paragraph with sentences and tokenisation:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
(continues on next page)

176 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <p xml:id="example.p.1">
24 <s xml:id="example.p.1.s.1">
25 <w xml:id="example.p.1.s.1.w.1" class="WORD">
26 <t>Hello</t>
27 </w>
28 <w xml:id="example.p.1.s.1.w.2" class="WORD" space="no">
29 <t>World</t>
30 </w>
31 <w xml:id="example.p.1.s.1.w.3" class="PUNCTUATION">
32 <t>!</t>
33 </w>
34 </s>
35 <s xml:id="example.p.1.s.2">
36 <w xml:id="example.p.1.s.2.w.1" class="WORD">
37 <t>This</t>
38 </w>
39 <w xml:id="example.p.1.s.2.w.2" class="WORD">
40 <t>is</t>
41 </w>
42 <w xml:id="example.p.1.s.2.w.3" class="WORD">
43 <t>an</t>
44 </w>
45 <w xml:id="example.p.1.s.2.w.4" class="WORD" space="no">
46 <t>example</t>
47 </w>
48 <w xml:id="example.p.1.s.2.w.5" class="PUNCTUATION">
49 <t>.</t>
50 </w>
51 </s>
52 </p>
53 </text>
54 </FoLiA>

4.5.4 Head Annotation

The head element is used to provide a header or title for the structure element in which it is embedded,
usually a division (<div>)

4.5. Structure Annotation 177

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Specification

Annotation Category Structure Annotation
Declaration <head-annotation set="..."> (note: set is optional for this annotation type; if

you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <head>

API Class Head (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

178 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Head.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <event> (Event Annotation), <external> (External Annotation),
<gap> (Gap Annotation), <hiddenw> (Hidden Token Annotation),
 (Linebreak),
<metric> (Metric Annotation), <p> (Paragraph Annotation), <part> (Part Annotation),
<ph> (Phonetic Annotation/Content), <ref> (Reference Annotation), <relation> (Rela-
tion Annotation), <s> (Sentence Annotation), <str> (String Annotation), <t> (Text An-
notation), <whitespace> (Vertical Whitespace), <w> (Token Annotation)

Valid Context <div> (Division Annotation), <event> (Event Annotation), <note> (Note An-
notation), <p> (Paragraph Annotation)

Description & Examples

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <head-annotation>
12 <annotator processor="p1" />
13 </head-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <div xml:id="example.div.1" class="chapter" n="1">
24 <head>
25 <t>Chapter 1: In the beginning</t>
26 </head>
27 <div xml:id="example.div.1.1" class="section" n="1.1">
28 <head>
29 <t>Section 1.1: The first steps</t>
30 </head>

(continues on next page)

4.5. Structure Annotation 179

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

31 <p xml:id="example.div.1.1.p.1">
32 <t>And so the first paragraph commences...</t>
33 </p>
34 </div>
35 </div>
36 </text>
37 </FoLiA>

4.5.5 List Annotation

Structure annotation for enumeration/itemisation, e.g. bulleted lists.

Specification

List

Annotation Category Structure Annotation
Declaration <list-annotation set="..."> (note: set is optional for this annotation type; if

you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <list>

API Class List (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

180 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.List.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <event> (Event Annotation), <external> (External Annotation),

 (Linebreak), <metric> (Metric Annotation), <note> (Note Annotation), <part>
(Part Annotation), <ph> (Phonetic Annotation/Content), <ref> (Reference Annotation),
<relation> (Relation Annotation), <str> (String Annotation), <t> (Text Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <note> (Note Annotation), <p> (Paragraph An-
notation), <term> (Term Annotation)

Item

Element <item>

API Class ListItem (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

4.5. Structure Annotation 181

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.ListItem.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <event> (Event Annotation), <external> (External Annotation),
<gap> (Gap Annotation), <hiddenw> (Hidden Token Annotation),
 (Linebreak),
<list> (List Annotation), <metric> (Metric Annotation), <note> (Note Annotation), <p>
(Paragraph Annotation), <part> (Part Annotation), <ph> (Phonetic Annotation/Content),
<quote> (Quote Annotation), <ref> (Reference Annotation), <relation> (Relation An-
notation), <s> (Sentence Annotation), <str> (String Annotation), <t> (Text Annotation),
<whitespace> (Vertical Whitespace), <w> (Token Annotation)

Valid Context <list> (List Annotation)

182 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Explanation

The <list> element creates a list, a class and set may be associated with the list to indicate the type of list.
As always, this vocabulary is user-defined. Individual list items need to be wrapped in the <item> structure
element.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation />
6 <token-annotation>
7 <annotator processor="p1" />
8 </token-annotation>
9 <list-annotation />

10 </annotations>
11 <provenance>
12 <processor xml:id="p1" name="proycon" type="manual" />
13 </provenance>
14 </metadata>
15 <text xml:id="example.text">
16 <list xml:id="example.list.1">
17 <item n="1">
18 <w xml:id="example.list.1.item.1">
19 <t>Hello</t>
20 </w>
21 </item>
22 <item n="2">
23 <w xml:id="example.list.1.item.2">
24 <t>Bonjour</t>
25 </w>
26 </item>
27 <item n="3">
28 <w xml:id="example.list.1.item.3">
29 <t>Hola</t>
30 </w>
31 </item>
32 </list>
33 </text>
34 </FoLiA>

4.5.6 Figure Annotation

Structure annotation for including pictures, optionally captioned, in documents.

Specification

Figure

Annotation Category Structure Annotation
Declaration <figure-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)

4.5. Structure Annotation 183

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Version History Since the beginning
Element <figure>

API Class Figure (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry

184 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Figure.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation),
 (Linebreak), <metric>
(Metric Annotation), <part> (Part Annotation), <relation> (Relation Annotation), <str>
(String Annotation), <t> (Text Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <note> (Note Annotation), <p> (Paragraph An-
notation), <term> (Term Annotation)

Extra Attributes src – Points to an image file (URL)

Caption

Element <caption>

API Class Caption (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if

4.5. Structure Annotation 185

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Caption.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <gap> (Gap Annotation),

(Linebreak), <metric> (Metric Annotation), <p> (Paragraph Annotation), <part> (Part
Annotation), <ph> (Phonetic Annotation/Content), <quote> (Quote Annotation), <ref>
(Reference Annotation), <relation> (Relation Annotation), <s> (Sentence Annotation),
<str> (String Annotation), <t> (Text Annotation), <whitespace> (Vertical Whitespace)

Valid Context <figure> (Figure Annotation), <list> (List Annotation)

Explanation

Even figures can be encoded in the FoLiA format, although the actual figure itself can only be included as a
mere reference to an external image file, but including such a reference with the src attribute is optional.
Within the context of a figure, a caption element can be used.

Example

The following example shows a figure and caption:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <head-annotation>
12 <annotator processor="p1" />
13 </head-annotation>

(continues on next page)

186 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

14 <figure-annotation>
15 <annotator processor="p1" />
16 </figure-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <div xml:id="example.div.1" class="chapter" n="1">
24 <head>
25 <t>Rosetta Stone</t>
26 </head>
27 <figure xml:id="example.figure.1" n="1" src="https://upload.wikimedia.org/

↪→wikipedia/commons/thumb/2/23/Rosetta_Stone.JPG/1280px-Rosetta_Stone.JPG">
28 <caption><t>Wikipedia: The Rosetta Stone is a granodiorite stele, found in␣

↪→1799, inscribed with three versions of a decree issued at Memphis, Egypt in 196 BC␣
↪→during the Ptolemaic dynasty on behalf of King Ptolemy V </t></caption>

29 </figure>
30 </div>
31 </text>
32 </FoLiA>

4.5.7 Vertical Whitespace

Structure annotation introducing vertical whitespace

Note: Do not confuse this with the <t-space> markup element that is used for horizontal whitespace, see
Horizontal Whitespace.

Specification

Annotation Category Structure Annotation
Declaration <whitespace-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <whitespace>

API Class Whitespace (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

4.5. Structure Annotation 187

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Whitespace.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <metric> (Metric Annotation),
<part> (Part Annotation), <relation> (Relation Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <head> (Head Annotation), <note> (Note An-
notation), <p> (Paragraph Annotation), <quote> (Quote Annotation), <ref> (Reference
Annotation), <s> (Sentence Annotation), <term> (Term Annotation)

188 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Text markup Element

Element <t-whitespace>

API Class TextMarkupWhitespace (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they

4.5. Structure Annotation 189

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TextMarkupWhitespace.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context

Description & Examples

Sometimes you may want to explicitly specify vertical whitespace, rather than repeat multiple linebreaks
(Linebreak), the <whitespace> element accomplishes this. Note that using <p> to denote paragraphs is
always strongly preferred over using <whitespace> to mark their boundaries, this element should be used
sparingly!
The difference between br and whitespace is that the former specifies that only a linebreak was present,
not forcing any vertical whitespace between the lines, whilst the latter actually generates an empty space,
which would comparable to two successive br statements. Moreover, you have the ability to associate your
own vocabulary set with <whitespace> and assign your own size-interpretation to it. Both elements can be
used inside various structural elements, such as divisions, paragraphs, headers, and sentences.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.5.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <whitespace-annotation>
12 <annotator processor="p1" />
13 </whitespace-annotation>
14 <hspace-annotation>
15 <annotator processor="p1" />
16 </hspace-annotation>
17 <linebreak-annotation>
18 <annotator processor="p1" />
19 </linebreak-annotation>
20 <hyphenation-annotation>
21 <annotator processor="p1" />
22 </hyphenation-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <div xml:id="example.div.1" class="section" n="1">
30 <t>Blah...</t>
31 </div>
32 <whitespace />
33 <br newpage="yes" pagenr="2" />

(continues on next page)

190 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

34 <div xml:id="example.div.2" class="section" n="2">
35 <!-- BR has a double role, it can be used a text markup element as well, as␣

↪→seen on the next line -->
36 <t>To be,
or not to be!</t>
37 </div>
38 <div xml:id="example.div.3" class="section" n="3">
39 <t>Don't leave me bro<t-hbr/>ken and alone!</t>
40 </div>
41 <div xml:id="example.div.4" class="section" n="4">
42 <t>Space,<t-hspace/>the<t-hspace/>final<t-hspace/>
43 frontier</t>
44 </div>
45 </text>
46 </FoLiA>

4.5.8 Linebreak

Structure annotation representing a single linebreak and with special facilities to denote pagebreaks.

Specification

Annotation Category Structure Annotation
Declaration <linebreak-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element

API Class Linebreak (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

4.5. Structure Annotation 191

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Linebreak.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <metric> (Metric Annotation),
<part> (Part Annotation), <relation> (Relation Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <figure> (Figure Annotation), <head> (Head
Annotation), <t-hbr> (Hyphenation), <list> (List Annotation), <note> (Note Annota-
tion), <p> (Paragraph Annotation), <quote> (Quote Annotation), <ref> (Reference Anno-
tation), <s> (Sentence Annotation), <table> (Table Annotation), <term> (Term Annota-
tion), <t> (Text Annotation), <t-correction> (Correction Annotation), <t-error> (Error
Detection Annotation (DEPRECATED)), <t-gap> (Gap Annotation), <t-hspace> (Hori-
zontal Whitespace), <t-lang> (Language Annotation), <t-ref> (Reference Annotation),
<t-str> (String Annotation), <t-style> (Style Annotation), <t-whitespace> (Vertical
Whitespace)

Extra Attributes

• newpage – Can be set to yes to indicate that the break is not just a linebreak, but also
a pagebreak (defaults to no)

• pagenr – The number of the page after the break

192 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• linenr – The number of the line after the break

Description & Examples

Linebreaks play a double role, they are a structure element as well as a text markup element, the latter implies
that you may also use
 within the scope of text content, so within a <t> element.
The difference between br and whitespace is that the former specifies that only a linebreak was present,
not forcing any vertical whitespace between the lines, whilst the latter actually generates an empty space,
which would comparable to two successive br statements. Both elements can be used inside various structural
elements, such as divisions, paragraphs, headers, and sentences. Note that the example below also contains
an example of Hyphenation, which is a special softer kind of linebreak.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.5.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <whitespace-annotation>
12 <annotator processor="p1" />
13 </whitespace-annotation>
14 <hspace-annotation>
15 <annotator processor="p1" />
16 </hspace-annotation>
17 <linebreak-annotation>
18 <annotator processor="p1" />
19 </linebreak-annotation>
20 <hyphenation-annotation>
21 <annotator processor="p1" />
22 </hyphenation-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <div xml:id="example.div.1" class="section" n="1">
30 <t>Blah...</t>
31 </div>
32 <whitespace />
33 <br newpage="yes" pagenr="2" />
34 <div xml:id="example.div.2" class="section" n="2">
35 <!-- BR has a double role, it can be used a text markup element as well, as␣

↪→seen on the next line -->
36 <t>To be,
or not to be!</t>
37 </div>
38 <div xml:id="example.div.3" class="section" n="3">
39 <t>Don't leave me bro<t-hbr/>ken and alone!</t>
40 </div>
41 <div xml:id="example.div.4" class="section" n="4">
42 <t>Space,<t-hspace/>the<t-hspace/>final<t-hspace/>

(continues on next page)

4.5. Structure Annotation 193

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

43 frontier</t>
44 </div>
45 </text>
46 </FoLiA>

You can use
 also in the context of Text Markup Annotation, as in the following example:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <sentence-annotation>
9 <annotator processor="p1" />

10 </sentence-annotation>
11 <linebreak-annotation>
12 <annotator processor="p1" />
13 </linebreak-annotation>
14 <part-annotation>
15 <annotator processor="p1" />
16 </part-annotation>
17 <style-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/styles.foliaset.xml">
18 <annotator processor="p1" />
19 </style-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <s>
27 <t>To <t-style class="italic">be</t-style> or not to be,
that is the

↪→<t-style class="bold"><t-style class="red">question</t-style></t-style>.</t>
28 </s>
29 </text>
30 </FoLiA>

4.5.9 Sentence Annotation

Structure annotation representing a sentence. Sentence detection is a common stage in NLP alongside
tokenisation.

Specification

Annotation Category Structure Annotation
Declaration <sentence-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since the beginning
Element <s>

API Class Sentence (FoLiApy API Reference)

194 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Sentence.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

4.5. Structure Annotation 195

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <entry> (Entry Annotation), <event> (Event Annotation), <ex>
(Example Annotation), <external> (External Annotation), <gap> (Gap Annotation),
<hiddenw> (Hidden Token Annotation),
 (Linebreak), <metric> (Metric Annota-
tion), <note> (Note Annotation), <part> (Part Annotation), <ph> (Phonetic Annota-
tion/Content), <quote> (Quote Annotation), <ref> (Reference Annotation), <relation>
(Relation Annotation), <str> (String Annotation), <t> (Text Annotation), <whitespace>
(Vertical Whitespace), <w> (Token Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <head> (Head Annotation), <note> (Note An-
notation), <p> (Paragraph Annotation), <quote> (Quote Annotation), <ref> (Reference
Annotation), <term> (Term Annotation), <utt> (Utterance Annotation)

Explanation & Examples

The next example shows a paragraph with sentences and tokenisation:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 <paragraph-annotation>
15 <annotator processor="p1" />
16 </paragraph-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <p xml:id="example.p.1">
24 <s xml:id="example.p.1.s.1">
25 <w xml:id="example.p.1.s.1.w.1" class="WORD">
26 <t>Hello</t>
27 </w>
28 <w xml:id="example.p.1.s.1.w.2" class="WORD" space="no">
29 <t>World</t>
30 </w>
31 <w xml:id="example.p.1.s.1.w.3" class="PUNCTUATION">
32 <t>!</t>
33 </w>
34 </s>
35 <s xml:id="example.p.1.s.2">
36 <w xml:id="example.p.1.s.2.w.1" class="WORD">
37 <t>This</t>

(continues on next page)

196 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

38 </w>
39 <w xml:id="example.p.1.s.2.w.2" class="WORD">
40 <t>is</t>
41 </w>
42 <w xml:id="example.p.1.s.2.w.3" class="WORD">
43 <t>an</t>
44 </w>
45 <w xml:id="example.p.1.s.2.w.4" class="WORD" space="no">
46 <t>example</t>
47 </w>
48 <w xml:id="example.p.1.s.2.w.5" class="PUNCTUATION">
49 <t>.</t>
50 </w>
51 </s>
52 </p>
53 </text>
54 </FoLiA>

4.5.10 Event Annotation

Structural annotation type representing events, often used in new media contexts for things such as tweets,
chat messages and forum posts (as defined by a user-defined set definition). Note that a more linguistic kind
of event annotation can be accomplished with Entity Annotation or even Time Segmentation rather than this
one.

Specification

Annotation Category Structure Annotation
Declaration <event-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History since v0.7
Element <event>

API Class Event (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

4.5. Structure Annotation 197

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Event.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <div> (Division Annotation), <entry> (Entry Annotation), <event>
(Event Annotation), <ex> (Example Annotation), <external> (External Annotation),
<figure> (Figure Annotation), <gap> (Gap Annotation), <head> (Head Annotation),
<hiddenw> (Hidden Token Annotation),
 (Linebreak), <list> (List Annotation),
<metric> (Metric Annotation), <note> (Note Annotation), <p> (Paragraph Annotation),
<part> (Part Annotation), <ph> (Phonetic Annotation/Content), <quote> (Quote Anno-
tation), <ref> (Reference Annotation), <relation> (Relation Annotation), <s> (Sentence
Annotation), <str> (String Annotation), <table> (Table Annotation), <t> (Text Anno-
tation), <utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token
Annotation)

Valid Context <div> (Division Annotation), <event> (Event Annotation), <head> (Head An-
notation), <list> (List Annotation), <p> (Paragraph Annotation), <s> (Sentence Annota-
tion), <term> (Term Annotation)

Feature subsets (extra attributes)

198 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• actor

• begindatetime

• enddatetime

Explanation

Event structure, though uncommon to regular written text, can be useful in certain documents. Divisions,
paragraphs, sentences, or even words can be encapsulated in an event element to indicate they somehow form
an event entity of a particular class. This kind of structure annotation is especially useful in dealing with
computer-mediated communication such as chat logs, tweets, and internet fora, in which chat turns, forum
posts, and tweets can be demarcated as particular events.
The event class predefines some feature subsets you can use (you can use these as XML attributes, see Features
for more information on features); the subsets begindatetime and enddatetime can be used express to
the exact moment at which an event started or ended. Note that this differs from the common datetime
attribute, which would describe the time at which the annotation was recorded, rather than when the event
took place! The actor subset is used to associate the person responsible for the event, i.e. the speaker or
poster.
For more fine-grained control over timed events, for example within sentences. It is recommended to use
Time Segmentation!

Example

The following example shows a chat log composed of message events:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <event-annotation set="adhoc">
9 <annotator processor="p1" />

10 </event-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>
14 </annotations>
15 <provenance>
16 <processor xml:id="p1" name="proycon" type="manual" />
17 </provenance>
18 </metadata>
19 <text xml:id="example.text">
20 <event class="message" begindatetime="2011-12-15T19:01"
21 enddatetime="2011-12-15T19:05" actor="Jane Doe">
22 <s>
23 <t>Hello John.</t>
24 </s>
25 <s>
26 <t>How are you doing?</t>
27 </s>
28 </event>
29 <event class="message" begindatetime="2011-12-15T19:06"
30 actor="John Doe">

(continues on next page)

4.5. Structure Annotation 199

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

31 <s>
32 <t>I am fine Jane, thanks.</t>
33 </s>
34 </event>
35 </text>
36 </FoLiA>

4.5.11 Quote Annotation

Structural annotation used to explicitly mark quoted speech, i.e. that what is reported to be said and appears
in the text in some form of quotation marks.

Specification

Annotation Category Structure Annotation
Declaration <quote-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History Since v0.11
Element <quote>

API Class Quote (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be

200 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Quote.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <div> (Division Annotation), <external> (External Annotation),
<gap> (Gap Annotation), <hiddenw> (Hidden Token Annotation),
 (Linebreak),
<metric> (Metric Annotation), <p> (Paragraph Annotation), <part> (Part Annotation),
<quote> (Quote Annotation), <ref> (Reference Annotation), <relation> (Relation An-
notation), <s> (Sentence Annotation), <str> (String Annotation), <t> (Text Annotation),
<utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annota-
tion)

Valid Context <div> (Division Annotation), <event> (Event Annotation), <p> (Paragraph An-
notation), <quote> (Quote Annotation), <ref> (Reference Annotation), <s> (Sentence
Annotation), <utt> (Utterance Annotation)

Example

The next example shows a quote annotations:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation>
6 <annotator processor="p1" />
7 </token-annotation>
8 <text-annotation>
9 <annotator processor="p1" />

10 </text-annotation>
11 <sentence-annotation>
12 <annotator processor="p1" />
13 </sentence-annotation>

(continues on next page)

4.5. Structure Annotation 201

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

14 <quote-annotation>
15 <annotator processor="p1" />
16 </quote-annotation>
17 </annotations>
18 <provenance>
19 <processor xml:id="p1" name="proycon" type="manual" />
20 </provenance>
21 </metadata>
22 <text xml:id="example.text">
23 <s xml:id="example.p.1.s.1">
24 <w xml:id="example.p.1.s.1.w.1"><t>He</t></w>
25 <w xml:id="example.p.1.s.1.w.2" space="no"><t>said</t></w>
26 <w xml:id="example.p.1.s.1.w.3">
27 <t>:</t>
28 </w>
29 <quote xml:id="example.p.1.s.1.quote.1">
30 <w xml:id="example.p.1.s.1.w.4" space="no">
31 <t>"</t>
32 </w>
33 <s xml:id="example.p.1.s.1.quote.1.s.1">
34 <w xml:id="example.p.1.s.1.w.5"><t>I</t></w>
35 <w xml:id="example.p.1.s.1.w.6"><t>do</t></w>
36 <w xml:id="example.p.1.s.1.w.7"><t>not</t></w>
37 <w xml:id="example.p.1.s.1.w.8" space="no"><t>know</t></w>
38 <w xml:id="example.p.1.s.1.w.9">
39 <t>.</t>
40 </w>
41 </s>
42 <s xml:id="example.p.1.s.1.quote.1.s.2">
43 <w xml:id="example.p.1.s.1.w.10"><t>I</t></w>
44 <w xml:id="example.p.1.s.1.w.11"><t>think</t></w>
45 <w xml:id="example.p.1.s.1.w.12"><t>you</t></w>
46 <w xml:id="example.p.1.s.1.w.13"><t>are</t></w>
47 <w xml:id="example.p.1.s.1.w.14" space="no"><t>right</t></w>
48 </s>
49 <w xml:id="example.p.1.s.1.w.15">
50 <t>"</t>
51 </w>
52 </quote>
53 <w xml:id="example.p.1.s.1.w.16"><t>,</t></w>
54 <w xml:id="example.p.1.s.1.w.17"><t>and</t></w>
55 <w xml:id="example.p.1.s.1.w.18" space="no"><t>left</t></w>
56 <w xml:id="example.p.1.s.1.w.19">
57 <t>.</t>
58 </w>
59 </s>
60 </text>
61 </FoLiA>

4.5.12 Note Annotation

Structural annotation used for notes, such as footnotes or warnings or notice blocks.

202 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Specification

Annotation Category Structure Annotation
Declaration <note-annotation set="..."> (note: set is optional for this annotation type; if

you declare this annotation type to be setless you can not assign classes)
Version History Since v0.11
Element <note>

API Class Note (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

4.5. Structure Annotation 203

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Note.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <ex> (Example Annotation), <external> (External Annotation),
<figure> (Figure Annotation), <head> (Head Annotation), <hiddenw> (Hidden Token An-
notation),
 (Linebreak), <list> (List Annotation), <metric> (Metric Annotation), <p>
(Paragraph Annotation), <part> (Part Annotation), <ph> (Phonetic Annotation/Content),
<ref> (Reference Annotation), <relation> (Relation Annotation), <s> (Sentence Anno-
tation), <str> (String Annotation), <table> (Table Annotation), <t> (Text Annotation),
<utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annota-
tion)

Valid Context <div> (Division Annotation), <event> (Event Annotation), <list> (List Anno-
tation), <p> (Paragraph Annotation), <s> (Sentence Annotation), <utt> (Utterance Anno-
tation)

Set Definitions You can use any of the following exist-
ing set definitions or simply create your own: *
‘https://raw.githubusercontent.com/proycon/folia/master/setdefinitions/notes.foliaset.xml‘_

Explanation

The structure element <note> allows for notes to be included in FoLiA documents. A footnote or a biblio-
graphical reference is an example of a note. The notes form an integral part of the text. For notes that are
merely descriptive comments on the text or its annotations, rather than a part of it, use <desc> or <comment>
instead. Notes themselves can contain all the usual forms of annotations.
The place of a note in the text is where it will appear. References to the note are made using a specific tag,
<ref>, discussed in Reference Annotation.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" xmlns:xlink="http://www.w3.org/1999/xlink"␣

↪→version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <note-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/notes.foliaset.xml">
9 <annotator processor="p1" />

10 </note-annotation>
11 <reference-annotation>
12 <annotator processor="p1" />

(continues on next page)

204 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

13 </reference-annotation>
14 <sentence-annotation>
15 <annotator processor="p1" />
16 </sentence-annotation>
17 <paragraph-annotation>
18 <annotator processor="p1" />
19 </paragraph-annotation>
20 <part-annotation>
21 <annotator processor="p1" />
22 </part-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <p xml:id="example.p.1">
30 <s xml:id="example.p.1.s.1">
31 <t>We demonstrated this earlier.</t>
32 </s>
33 <ref xml:id="example.ref.1" id="example.note.1" />
34 </p>
35 <note xml:id="example.note.1" class="footnote">
36 <part>
37 <t>See our website.</t>
38 </part>
39 <ref xml:id="example.ref.2" xlink:href="https://github.io/folia" xlink:type=

↪→"simple" format="text/html" />
40 </note>
41 </text>
42 </FoLiA>

4.5.13 Reference Annotation

Structural annotation for referring to other annotation types. Used e.g. for referring to bibliography entries
(citations) and footnotes.
Not to be confused with Coreference Annotation!

Specification

Annotation Category Structure Annotation
Declaration <reference-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since v0.11, external references since v1.2
Element <ref>

API Class Reference (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not

4.5. Structure Annotation 205

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Reference.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <hiddenw> (Hidden Token An-

206 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

notation),
 (Linebreak), <metric> (Metric Annotation), <p> (Paragraph Annotation),
<part> (Part Annotation), <ph> (Phonetic Annotation/Content), <quote> (Quote Anno-
tation), <relation> (Relation Annotation), <s> (Sentence Annotation), <str> (String An-
notation), <t> (Text Annotation), <utt> (Utterance Annotation), <whitespace> (Vertical
Whitespace), <w> (Token Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <head> (Head Annotation), <hiddenw> (Hidden
Token Annotation), <list> (List Annotation), <note> (Note Annotation), <p> (Paragraph
Annotation), <quote> (Quote Annotation), <s> (Sentence Annotation), <term> (Term
Annotation), <utt> (Utterance Annotation), <w> (Token Annotation)

Extra Attributes

• id – The ID of the element to link to
• type (optional) – The type of the element that is being linked to (e.g. note)

Element <t-ref>

API Class TextMarkupReference (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

4.5. Structure Annotation 207

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TextMarkupReference.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context

Extra Attributes

• id – The ID of the element to link to
• type (optional) – The type of the element that is being linked to (e.g. note)

Explanation & Examples

FoLiA allows for things like footnotes and bibliography entry using Note Annotation. In this section we show
that you can make references to these notes using the <ref> element, this is a structure element, which
implies that the references are explicitly present in the text. The <ref> element, however, carries an extra
higher-order annotation function:

<s>
<t>We demonstrated this earlier.</t>

</s>
<ref id="mynote" />

Another example in tokenised data, and now we add the optional type attribute, which holds the type of the
FoLiA element that is referred to:

<s>
<w><t>We</t></w>
<w><t>demonstrated</t></w>
<w><t>this</t></w>
<w><t>earlier</t></w>
<w><t>.</t></w>
<ref id="mynote" type="note" />

</s>

You can optionally make explicit the symbol used for the reference. When no textual content is provided,
whatever program renders the FoLiA document may assign its own numbering or symbol.

<s>
<t>We demonstrated this earlier.</t>

</s>
<ref id="mynote" type="note"><t>1</t></ref>

208 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

This is often needed for bibliographical references:

<s>
<t>We demonstrated this earlier.</t>

</s>
<ref id="bib.1" type="note"><t>(van Gompel et al, 2014)</t></ref>

As a structure element, the <ref> element may contain other structure elements such as words (Token
Annotation) or even sentences (Sentence Annotation) or paragraphs (Paragraph Annotation), which can in
turn contain further linguistic annotations.
Although we framed this section in the context of notes, the <ref> element is more general and can be
used whereever you need to explicitly refer to other structure elements. Common targets are figures, tables,
divisions (sections, chapters, etc).
Being a structure element, the note reference itself may carry an ID as well. Note that the ID attribute
without the xml namespace always indicates a reference in FoLiA:

<s><t>We demonstrated this earlier.</t></s>
<ref xml:id="myreference" id="mynote" />

The difference between the reference element and the higher-order relations (Relation Annotation) needs to
be clearly understood. Relation annotation lays relations between annotations of any kind and thus pertain
strongly to linguistic annotation, whereas this reference element is a structural element that is explicitly shown
in the text and draws a reference that is explicitly reflected in the text.
External references can also be made with the <ref> element, which effectively makes it a valid tool for
hyperlinking. This is done by setting the xlink:href to point to the external resource and by setting the
format attribute to the format of the external resource. The format is understood to be a MIME type and
its value defaults to text/folia+xml. When an external reference is made, the id attribute is optional and
points to an element inside the external resource.

<s>
<w><t>We</t></w>
<w><t>demonstrated</t></w>
<w><t>this</t></w>
<ref xlink:href="http://somewhere" xlink:type="simple"
format="text/html" id="section2">
<w><t>here</t></w>

</ref>
<w><t>.</t></w>

</s>

The <ref> element has a text-markup counterpart called <t-ref>, which can be used to link from untokenised
text, both for internal and external links, as shown in the next two examples:

<s>
<t>We demonstrated this earlier. <t-ref id="mynote" /></t>

</s>

<s>
<t>We demonstrated this <t-ref xlink:href="http://somewhere" xlink:type="simple"␣

↪→format="text/html" id="section2">here</t-ref>.</t>
</s>

The method of hyperlinking described in this section can be contrasted to the more generic one described in
Hyperlinks. The <ref> (and <t-ref>) element offers a highly semantic way of hyperlinking, especially suited
for explicitly linking to other internal FoLiA elements, whereas the other hyperlinking method is more of a
text-markup or stylistic nature and more suited for external hyperlinks.

4.5. Structure Annotation 209

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" xmlns:xlink="http://www.w3.org/1999/xlink"␣

↪→version="2.0.4" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <note-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/notes.foliaset.xml">
9 <annotator processor="p1" />

10 </note-annotation>
11 <reference-annotation>
12 <annotator processor="p1" />
13 </reference-annotation>
14 <sentence-annotation>
15 <annotator processor="p1" />
16 </sentence-annotation>
17 <paragraph-annotation>
18 <annotator processor="p1" />
19 </paragraph-annotation>
20 <part-annotation>
21 <annotator processor="p1" />
22 </part-annotation>
23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <p xml:id="example.p.1">
30 <s xml:id="example.p.1.s.1">
31 <t>We demonstrated this earlier.</t>
32 </s>
33 <ref xml:id="example.ref.1" id="example.note.1" />
34 </p>
35 <p xml:id="example.p.2">
36 <s xml:id="example.p.1.s.2">
37 <t>We demonstrated this earlier.<t-ref id="example.note.1" type="note" /></

↪→t>
38 </s>
39 </p>
40 <note xml:id="example.note.1" class="footnote">
41 <part>
42 <t>See our website.</t>
43 </part>
44 <ref xml:id="example.ref.2" xlink:href="https://github.io/folia" xlink:type=

↪→"simple" format="text/html" />
45 </note>
46 <note xml:id="example.note.2" class="footnote">
47 <t>See our website.<t-ref xlink:href="https://github.io/folia" xlink:type=

↪→"simple" format="text/html" /></t>
48 </note>
49 </text>
50 </FoLiA>

210 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.5.14 Table Annotation

Structural annotation type for creating a simple tabular environment, i.e. a table with rows, columns and
cells and an optional header.

Specification

Annotation Category Structure Annotation
Declaration <table-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History since v0.9.2
Element <table>

API Class Table (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.

4.5. Structure Annotation 211

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Table.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation),
 (Linebreak), <metric>
(Metric Annotation), <part> (Part Annotation), <relation> (Relation Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <note> (Note Annotation), <term> (Term An-
notation)

Element <tablehead>

API Class TableHead (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

212 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TableHead.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <metric> (Metric Annotation),
<part> (Part Annotation), <relation> (Relation Annotation)

Valid Context <table> (Table Annotation)
XXX .. foliaspec:specification_element(Row) :Element: <row> :API Class: Row (FoLiApy API Reference)
:Required Attributes: :Optional Attributes: * xml:id – The ID of the element; this has to be a unique in
the entire document or collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not a number or symbol),
may contain numbers, but may never contain colons or spaces. FoLiA does not define any naming convention
for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions (Vocabulary)) or
otherwise a uniquely identifying string. The set must be referred to also in the Annotation Declarations
for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined by set.
• processor – This refers to the ID of a processor in the provenance_data. The processor in turn defines

exactly who or what was the annotator of the annotation.
• annotator – This is an older alternative to the processor attribute, without support for full prove-

nance. The annotator attribute simply refers to the name o ID of the system or human annotator that
made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without support for full
provenance. It is used together with annotator and specific the type of the annotator, either manual
for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence the annotator
places in his annotation.

4.5. Structure Annotation 213

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Row.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• datetime – The date and time when this annotation was recorded, the format is YYYY-MM-DDThh:mm:ss
(note the literal T in the middle to separate date from time), as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for example chapter
numbers, section numbers, list item numbers. This this not have to be an actual number but other
sequence identifiers are also possible (think alphanumeric characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element (it’s default
value is always yes, so it does not need to be specified in that case), but if tokens or other structural
elements are glued together then the value should be set to no. This allows for reconstruction of the
detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the speech. If a

sound clip is specified (src); the timestamp refers to a location in the soundclip.
• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech. If a sound

clip is specified (src); the timestamp refers to a location in the soundclip.
• speaker – A string identifying the speaker. This attribute is inheritable. Multiple speakers are not

allowed, simply do not specify a speaker on a certain level if you are unable to link the speech to a
specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element. A processing tag
carries arbitrary user-defined information that may aid in processing a document. It may carry cues
on how a specific tool should treat a specific element. The tag vocabulary is specific to the tool that
processes the document. Tags carry no instrinsic meaning for the data representation and should not
be used except to inform/aid processors in their task. Processors are encouraged to clean up the tags
they use. Ideally, published FoLiA documents at the end of a processing pipeline carry no further tags.
For encoding actual data, use class and optionally features instead.
Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),

<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <metric> (Metric Annotation),
<part> (Part Annotation), <relation> (Relation Annotation)

Valid Context <table> (Table Annotation)
Element <cell>

API Class Cell (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

214 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Cell.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <entry> (Entry Annotation), <event> (Event Annotation), <ex>
(Example Annotation), <external> (External Annotation), <figure> (Figure Annota-
tion), <gap> (Gap Annotation), <head> (Head Annotation), <hiddenw> (Hidden Token
Annotation),
 (Linebreak), <list> (List Annotation), <metric> (Metric Annota-
tion), <note> (Note Annotation), <p> (Paragraph Annotation), <part> (Part Annotation),
<quote> (Quote Annotation), <ref> (Reference Annotation), <relation> (Relation An-
notation), <s> (Sentence Annotation), <str> (String Annotation), <t> (Text Annotation),
<whitespace> (Vertical Whitespace), <w> (Token Annotation)

Valid Context

Explanation

Support for simple tables is provided in a fashion similar to HTML and TEI. The element <table> introduces
a table, within its scope row elements mark the various rows, <tablehead> marks the header of the table
and contains one or more rows. The rows themselves consist of <cell> elements, which in turn may contain
other structural elements such as words, sentences or even entire paragraphs.

4.5. Structure Annotation 215

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Tables, rows and cells can all be assigned classes (in the same set).

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <table-annotation>
9 <annotator processor="p1" />

10 </table-annotation>
11 <token-annotation>
12 <annotator processor="p1" />
13 </token-annotation>
14 </annotations>
15 <provenance>
16 <processor xml:id="p1" name="proycon" type="manual" />
17 </provenance>
18 </metadata>
19 <text xml:id="example.text">
20 <table xml:id="example.table.1">
21 <tablehead>
22 <row>
23 <cell>
24 <w xml:id="example.table.1.w.1"><t>Name</t></w>
25 </cell>
26 <cell>
27 <w xml:id="example.table.1.w.2"><t>Affiliation</t></w>
28 </cell>
29 </row>
30 </tablehead>
31 <row>
32 <cell>
33 <w xml:id="example.table.1.w.3"><t>Maarten van Gompel</t></w>
34 </cell>
35 <cell>
36 <w xml:id="example.table.1.w.4">
37 <t>Radboud University Nijmegen</t>
38 </w>
39 </cell>
40 </row>
41 <row>
42 <cell>
43 <w xml:id="example.table.1.w.5"><t>Ko van der Sloot</t></w>
44 </cell>
45 <cell>
46 <w xml:id="example.table.1.w.6"><t>Radboud University Nijmegen</t></w>
47 </cell>
48 </row>
49 </table>
50 </text>
51 </FoLiA>

216 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.5.15 Part Annotation

The structure element part is a fairly abstract structure element that should only be used when a more specific
structure element is not available. Most notably, the part element should never be used for representation
of morphemes or phonemes! Part can be used to divide a larger structure element, such as a division, or a
paragraph into arbitrary subparts.

Specification

Annotation Category Structure Annotation
Declaration <part-annotation set="..."> (note: set is optional for this annotation type; if

you declare this annotation type to be setless you can not assign classes)
Version History since v0.11.2
Element <part>

API Class Part (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.

4.5. Structure Annotation 217

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Part.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <metric> (Metric Annotation),
<part> (Part Annotation), <ph> (Phonetic Annotation/Content), <relation> (Relation
Annotation), <t> (Text Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <entry> (Entry
Annotation), <event> (Event Annotation), <ex> (Example Annotation), <figure> (Figure
Annotation), <gap> (Gap Annotation), <head> (Head Annotation), <hiddenw> (Hidden
Token Annotation),
 (Linebreak), <list> (List Annotation), <morpheme> (Morpholog-
ical Annotation), <note> (Note Annotation), <p> (Paragraph Annotation), <part> (Part
Annotation), <phoneme> (Phonological Annotation), <quote> (Quote Annotation), <ref>
(Reference Annotation), <s> (Sentence Annotation), <table> (Table Annotation), <term>
(Term Annotation), <utt> (Utterance Annotation), <whitespace> (Vertical Whitespace),
<w> (Token Annotation)

Explanation

Part can be used to divide a larger structure element, such as a division, or a paragraph into arbitrary subparts.

<p>
<part xml:id="p.1.part.1">
<t>First part of the paragraph.</t>

</part>
<part xml:id="p.2.part.2">
<t>Last part of the paragraph.</t>

</part>
</p>

The part element may seem alike to the division element, but divisions are typically used for text blocks larger
than a paragraph, typically correspondings to chapters, sections or subsections and often carrying a <head>
element. Do not use parts for these structures!
The part element, on the other hand, is more abstract and plays a role on a deeper level. It can be embedded
within paragraphs, sentences, and most other structure elements, even words, though we have to again
emphasize it should not be used for morphology, always use Morphological Annotation for that!
Contact the FoLiA authors if you find yourself using part and you feel a more specific FoLiA element is missing.

218 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.5.16 Utterance Annotation

An utterance is a structure element that may consist of words or sentences, which in turn may contain words.
The opposite is also true, a sentence may consist of multiple utterances. Utterances are often used in the
absence of sentences in a speech context, where neat grammatical sentences can not always be distinguished.

Specification

Annotation Category Structure Annotation
Declaration <utterance-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History since v0.12
Element <utt>

API Class Utterance (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.

4.5. Structure Annotation 219

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Utterance.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc>
(Description Annotation), <external> (External Annotation), <gap> (Gap Annotation),
<hiddenw> (Hidden Token Annotation), <metric> (Metric Annotation), <note> (Note
Annotation), <part> (Part Annotation), <ph> (Phonetic Annotation/Content), <quote>
(Quote Annotation), <ref> (Reference Annotation), <relation> (Relation Annotation),
<s> (Sentence Annotation), <str> (String Annotation), <t> (Text Annotation), <w> (To-
ken Annotation)

Valid Context <def> (Definition Annotation), <div> (Division Annotation), <event> (Event
Annotation), <ex> (Example Annotation), <note> (Note Annotation), <quote> (Quote
Annotation), <ref> (Reference Annotation), <term> (Term Annotation)

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <phon-annotation>
6 <annotator processor="p1" />
7 </phon-annotation>
8 <utterance-annotation>
9 <annotator processor="p1" />

10 </utterance-annotation>
11 <token-annotation>
12 <annotator processor="p1" />
13 </token-annotation>
14 </annotations>
15 <provenance>
16 <processor xml:id="p1" name="proycon" type="manual" />
17 </provenance>
18 </metadata>
19 <speech xml:id="example.speech">
20 <utt xml:id="example.utt.1" src="helloworld.mp3" begintime="00:00:01.000"␣

↪→endtime="00:00:02.000">
21 <ph>hel�o� w��ld</ph>
22 <w xml:id="example.utt.1.w.1" begintime="00:00:00.000" endtime="00:00:01.000">
23 <ph>hel�o�</ph>

(continues on next page)

220 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

24 </w>
25 <w xml:id="example.utt.1.w.2" begintime="00:00:01.000" endtime="00:00:02.000">
26 <ph>w��ld</ph>
27 </w>
28 </utt>
29 </speech>
30 </FoLiA>

4.5.17 Entry Annotation

FoLiA has a set of structure elements that can be used to represent collections such as glossaries, dictionaries,
thesauri, and wordnets. Entry annotation defines the entries in such collections, Term annotation defines the
terms, and Definition Annotation provides the definitions.
In this documentation we cover all four annotation types, as they are intimately connected.

Specification

Annotation Category Structure Annotation
Declaration <entry-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History since v0.12
Element <entry>

API Class Entry (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

4.5. Structure Annotation 221

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Entry.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <def> (Def-
inition Annotation), <desc> (Description Annotation), <ex> (Example Annotation),
<external> (External Annotation), <metric> (Metric Annotation), <part> (Part Anno-
tation), <relation> (Relation Annotation), <str> (String Annotation), <term> (Term
Annotation), <t> (Text Annotation)

Valid Context <div> (Division Annotation), <event> (Event Annotation), <p> (Paragraph An-
notation), <s> (Sentence Annotation)

Annotation Category Structure Annotation
Declaration <term-annotation set="..."> (note: set is optional for this annotation type; if

you declare this annotation type to be setless you can not assign classes)
Version History since v0.12
Element <term>

API Class Term (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

222 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Term.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <event> (Event Annotation), <external> (External Annotation),
<figure> (Figure Annotation), <gap> (Gap Annotation), <hiddenw> (Hidden Token An-
notation),
 (Linebreak), <list> (List Annotation), <metric> (Metric Annotation), <p>
(Paragraph Annotation), <part> (Part Annotation), <ph> (Phonetic Annotation/Content),
<ref> (Reference Annotation), <relation> (Relation Annotation), <s> (Sentence Anno-
tation), <str> (String Annotation), <table> (Table Annotation), <t> (Text Annotation),

4.5. Structure Annotation 223

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

<utt> (Utterance Annotation), <whitespace> (Vertical Whitespace), <w> (Token Annota-
tion)

Valid Context <entry> (Entry Annotation)
Annotation Category Structure Annotation
Declaration <definition-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History since v0.12
Element <def>

API Class Definition (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

224 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Definition.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <figure> (Figure Annotation),
<hiddenw> (Hidden Token Annotation),
 (Linebreak), <list> (List Annotation),
<metric> (Metric Annotation), <p> (Paragraph Annotation), <part> (Part Annotation),
<ph> (Phonetic Annotation/Content), <ref> (Reference Annotation), <relation> (Rela-
tion Annotation), <s> (Sentence Annotation), <str> (String Annotation), <table> (Table
Annotation), <t> (Text Annotation), <utt> (Utterance Annotation), <whitespace> (Ver-
tical Whitespace), <w> (Token Annotation)

Valid Context <entry> (Entry Annotation)
Annotation Category Structure Annotation
Declaration <example-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History since v0.12
Element <ex>

API Class Example (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

4.5. Structure Annotation 225

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Example.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <figure> (Figure Annotation),
<hiddenw> (Hidden Token Annotation),
 (Linebreak), <list> (List Annotation),
<metric> (Metric Annotation), <p> (Paragraph Annotation), <part> (Part Annotation),
<ph> (Phonetic Annotation/Content), <ref> (Reference Annotation), <relation> (Rela-
tion Annotation), <s> (Sentence Annotation), <str> (String Annotation), <table> (Table
Annotation), <t> (Text Annotation), <utt> (Utterance Annotation), <whitespace> (Ver-
tical Whitespace), <w> (Token Annotation)

Valid Context <div> (Division Annotation), <entry> (Entry Annotation), <event> (Event An-
notation), <note> (Note Annotation), <p> (Paragraph Annotation), <s> (Sentence Anno-
tation)

Explanation

Collections such as glossaries, dictionaries, thesauri and wordnets have in common that they consist of a set
of entries, which is represented in FoLiA by the <entry> element, and each entry is identified by one or more
terms, represented by the <term> element within an entry.
Terms need not be words, but a wide variety of structural elements can be used as the term. Within the
entry, these terms can subsequently be associated with one or more definitions, using the <def> element, or
with examples, using the <ex> element.
The <term>, <def> and <ex> elements can all take sets and classes, and thus need to be declared. The
<entry> elements themselves are simple containers and can contain multiple terms if they are deemed de-
pendent or related, such as in case of morphological variants such as verb conjugations and declensions. The

226 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

elements <term> and <def> can only be used within an <entry>. The <ex> element, however, can also be
used standalone in different contexts.
In FoLiA, linguistic annotations are associated with the structure element within the term itself. This is where
a glossary can for instance obtain part-of-speech or lexical semantic sense information, to name just a few
examples.
Below you see an example of a glossary entry, the sense set used comes from WordNet. The other sets are
fictitious.

<entry xml:id="entry.1">
<term xml:id="entry.1.term.1">
<w xml:id="entry.1.term.1.w.1">
<t>house</t>
<pos class="n">
<feat subset="number" class="sing" />

</pos>
<lemma class="house" />
<sense class="house\%1:06:00::">

</w>
</term>
<term xml:id="entry.1.term.2">
<w xml:id="entry.1.term.2.w.1">
<t>houses/t>
<pos class="n">
<feat subset="number" class="plural" />

</pos>
<lemma class="house" />
<sense class="house\%1:06:00::">

</w>
</term>
<def xml:id="entry.1.def.1" class="sensedescription">
<p xml:id="entry.1.def.1.p.1">
<t>A dwelling, place of residence</t>

</p>
</def>
<ex>
<s xml:id="entry.1.ex.1.s.1>
<t>My house was constructed ten years ago.</t>

</s>
</ex>
</entry>

Other semantic senses would be represented as separate entries.
The definitions (<def>) are a generic element that can be used for multiple types of definition. As always,
the set is not predefined and purely fictitious in our examples, giving the user flexibility. Definitions are for
instance suited for dictionaries:

<entry xml:id="entry.1">
<term xml:id="entry.1.term.1">
<w xml:id="entry.1.term.1.w.1">
<t>house</t>
<pos set="englishpos" class="n">
<feat subset="number" class="sing" />

</pos>
<lemma set="englishlemma" class="house" />
<sense set="englishsense" class="house\%1:06:00::">

</w>
(continues on next page)

4.5. Structure Annotation 227

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</term>
<def xml:id="entry.1.def.1" class="translation-es">
<w xml:id="entry.1.def.1.w.1">
<t>casa</t>
<pos set="spanishpos" class="n">
<feat subset="number" class="sing" />

</pos>
<lemma set="spanishlemma" class="casa" />

</w>
</def>
</entry>

Or for etymological definitions:

<def xml:id="entry.1.def.2" class="etymology">
<p xml:id="entry.1.def.2.p.1">
<t>Old English hus "dwelling, shelter, house," from Proto-Germanic *husan

(cognates: Old Norse, Old Frisian hus, Dutch huis, German Haus), of unknown
origin, perhaps connected to the root of hide (v.) [OED]. In Gothic only in
gudhus "temple," literally "god-house;" the usual word for "house" in Gothic
being razn. </t>
</p>
</def>

The following two samples illustrate a dictionary distributed over multiple FoLiA files, using Relation Anno-
tation to link the two:
English part, doc-english.xml (excerpt):

<entry xml:id="en-entry.1">
<term xml:id="en-entry.1.term.1">
<w xml:id="en-entry.1.term.1.w.1">
<t>house</t>
<pos set="englishpos" class="n">
<feat subset="number" class="sing" />

</pos>
<lemma set="englishlemma" class="house" />
<sense set="englishsense" class="house\%1:06:00::">

</w>
</term>
<relation class="translation-es" xlink:href="doc-spanish.xml"

xlink:type="simple">
<xref id="es-entry.1" type="entry" />

</relation>
</entry>

Spanish part, doc-spanish.xml (excerpt):

<entry xml:id="es-entry.1">
<term xml:id="es-entry.1.def.1" class="translation-es">
<w xml:id="entry.1.def.1.w.1">
<t>casa</t>
<pos set="spanishpos" class="n">
<feat subset="number" class="sing" />

</pos>
<lemma set="spanishlemma" class="casa" />

</w>
(continues on next page)

228 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

</term>
<relation class="translation-en" xlink:href="doc-english.xml"

xlink:type="simple">
<xref id="en-entry.1" type="entry" />

</relation>
</entry>

For simple multilingual documents, explicit relations may be too much hassle, For situations where this seems
overkill, a simple multi-document mechanism is available. This mechanism is based purely on convention:
It assumes that structural elements that are translations simply share the same ID. This approach is quite
feasible when used on higher-level structural elements, such as divisions, paragraphs, events or entries.

4.5.18 Term Annotation

See also:

This annotatino type is covered by the documentation on Entry Annotation

4.5.19 Definition Annotation

See also:

This annotation type is covered by the documentation on Entry Annotation

4.5.20 Example Annotation

See also:

This annotation type is covered by the documentation on Entry Annotation

4.5.21 Hidden Token Annotation

This annotation type allows for a hidden token layer in the document. Hidden tokens are ignored for most
intents and purposes but may serve a purpose when annotations on implicit tokens is required, for example
as targets for syntactic movement annotation.

Specification

Annotation Category Structure Annotation
Declaration <hiddentoken-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since v2.0
Element <hiddenw>

API Class Hiddenword (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

4.5. Structure Annotation 229

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Hiddenword.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• textclass – Refers to the text class this annotation is based on. This is an advanced
attribute, if not specified, it defaults to current. See Text class attribute (advanced).

• space – This attribute indicates whether spacing should be inserted after this element
(it’s default value is always yes, so it does not need to be specified in that case), but if
tokens or other structural elements are glued together then the value should be set to
no. This allows for reconstruction of the detokenised original text.

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <external> (External Annotation), <metric> (Metric Annotation),
<part> (Part Annotation), <ph> (Phonetic Annotation/Content), <ref> (Reference Anno-
tation), <relation> (Relation Annotation), <str> (String Annotation), <t> (Text Anno-
tation)

230 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Valid Context <def> (Definition Annotation), <event> (Event Annotation), <ex> (Example
Annotation), <head> (Head Annotation), <note> (Note Annotation), <p> (Paragraph An-
notation), <quote> (Quote Annotation), <ref> (Reference Annotation), <s> (Sentence
Annotation), <term> (Term Annotation), <utt> (Utterance Annotation)

Explanation

Hidden tokens are tokens that are explicitly not part of the original text. They are either implied or tokens
that act as a dummy for further linguistic annotation. Hidden tokens are are valid target for any form of
span annotation through the <wref> element (see :ref:‘span_annotation_category‘_). They are structure
elements so may appear interleaved with the normal tokenisation layer, for which the order is significant.

Example

The following example shows syntactic movement annotation which makes use of a hidden token for an
implicit subject.

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <token-annotation set="https://raw.githubusercontent.com/LanguageMachines/

↪→uctodata/master/setdefinitions/tokconfig-eng.foliaset.ttl">
6 <annotator processor="p1" />
7 </token-annotation>
8 <hiddentoken-annotation>
9 <annotator processor="p1" />

10 </hiddentoken-annotation>
11 <text-annotation>
12 <annotator processor="p1" />
13 </text-annotation>
14 <sentence-annotation>
15 <annotator processor="p1" />
16 </sentence-annotation>
17 <pos-annotation set="adhoc">
18 <annotator processor="p1" />
19 </pos-annotation>
20 <syntax-annotation set="adhoc">
21 <annotator processor="p1" />
22 </syntax-annotation>
23 <description-annotation>
24 <annotator processor="p1" />
25 </description-annotation>
26 </annotations>
27 <provenance>
28 <processor xml:id="p1" name="proycon" type="manual" />
29 </provenance>
30 </metadata>
31 <text xml:id="example.text">
32 <s xml:id="example.s.1">
33 <t>Isn't a whole lot left.</t>
34 <hiddenw xml:id="example.s.1.w.0">
35 <t>*exp*</t>
36 <desc>empty expletive subject</desc>
37 <pos class="EX" />
38 </hiddenw>

(continues on next page)

4.5. Structure Annotation 231

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

39 <w xml:id="example.s.1.w.1" space="no">
40 <t>Is</t>
41 <pos class="BEP" />
42 </w>
43 <w xml:id="example.s.1.w.2">
44 <t>n't</t>
45 <pos class="NEG" />
46 </w>
47 <w xml:id="example.s.1.w.3">
48 <t>a</t>
49 <pos class="D" />
50 </w>
51 <w xml:id="example.s.1.w.4">
52 <t>whole</t>
53 <pos class="ADJ" />
54 </w>
55 <w xml:id="example.s.1.w.5">
56 <t>lot</t>
57 <pos class="N" />
58 </w>
59 <w xml:id="example.s.1.w.6" space="no">
60 <t>left</t>
61 <pos class="VAN" />
62 </w>
63 <w xml:id="example.s.1.w.7">
64 <t>.</t>
65 <pos class="PUNC" />
66 </w>
67 <syntax>
68 <su xml:id="example.s.1.su.1" class="IP-MAT">
69 <su xml:id="example.s.1.su.2" class="NP-SBJ">
70 <wref id="example.s.1.w.0" />
71 </su>
72 <su xml:id="example.s.1.su.3" class="VP">
73 <su xml:id="example.s.1.su.4" class="BEP">
74 <wref id="example.s.1.w.1" />
75 </su>
76 <su xml:id="example.s.1.su.5" class="NEG">
77 <wref id="example.s.1.w.2" />
78 </su>
79 <su xml:id="example.s.1.su.6" class="VP">
80 <su xml:id="example.s.1.su.7" class="NP-LGS">
81 <wref id="example.s.1.w.3" />
82 <su xml:id="example.s.1.su.8" class="ADJP">
83 <wref id="example.s.1.w.4" />
84 </su>
85 <wref id="example.s.1.w.5" />
86 </su>
87 <wref id="example.s.1.w.6" />
88 </su>
89 </su>
90 <su class="PUNC">
91 <wref id="example.s.1.w.7" />
92 </su>
93 </su>
94 </syntax>

(continues on next page)

232 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

95 </s>
96 </text>
97 </FoLiA>

4.6 Subtoken Annotation

This category contains morphological annotation and phonological annotation, i.e. the segmentation of
a word into morphemes and phonemes, and recursively so if desired. It is a special category that mixes
characteristics from structure annotation (the morpheme and phoneme elements are very structure-like) and
also from span annotation, as morphemes and phonemes are embedded in an annotation layer and refer back
to the text/phonetic content they apply to. Like words/tokens, these elements may also be referenced from
wref elements.
FoLiA defines the following types of subtoken annotation:

• Subtoken Annotation – This category contains morphological annotation and phonological annotation,
i.e. the segmentation of a word into morphemes and phonemes, and recursively so if desired. It is
a special category that mixes characteristics from structure annotation (the morpheme and phoneme
elements are very structure-like) and also from span annotation, as morphemes and phonemes are
embedded in an annotation layer and refer back to the text/phonetic content they apply to. Like
words/tokens, these elements may also be referenced from wref elements.

– Morphological Annotation – <morpheme> – Morphological Annotation allows splitting a
word/token into morphemes, morphemes itself may be nested. It is embedded within a layer
morphology which can be embedded within word/tokens.

– Phonological Annotation – <phoneme> – The smallest unit of annotatable speech in FoLiA is
the phoneme level. The phoneme element is a form of structure annotation used for phonemes.
Alike to morphology, it is embedded within a layer phonology which can be embedded within
word/tokens.

4.6.1 Morphological Annotation

Morphological Annotation allows splitting a word/token into morphemes, morphemes itself may be nested. It
is embedded within a layer morphology which can be embedded within word/tokens.

Specification

Annotation Category Subtoken Annotation
Declaration <morphological-annotation set="..."> (note: set is optional for this annota-

tion type; if you declare this annotation type to be setless you can not assign classes)
Version History Heavily revised since v0.9
Element <morpheme>

API Class Morpheme (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

4.6. Subtoken Annotation 233

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Morpheme.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <metric> (Metric Annotation), <morpheme> (Morphological Annota-
tion), <part> (Part Annotation), <ph> (Phonetic Annotation/Content), <relation> (Re-
lation Annotation), <str> (String Annotation), <t> (Text Annotation)

Valid Context <morpheme> (Morphological Annotation), <morphology> (Morphological Anno-
tation)

Feature subsets (extra attributes)

• function

234 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Explanation

Tokens can be further segmented into morphemes, a form of structure annotation. Morphemes behave much
like <w> elements (tokens). Moreover, morphemes can be referred to from within in span annotation using
<wref>, allowing spans to be defined not only over whole words/tokens but also parts thereof. The element
for morphemes is <morpheme>, and can only occur within <w> elements. Recall that <t> elements can contain
references to higher-level <t> elements. In such cases, the offset attribute is used to designate the offset
index in the word’s associated text element (<t>)‘ (zero being right at the start of the text). Morphemes may
do this.
Furthermore, a morpheme may take a class in a user-defined set, referring to its type.
Morphemes are grouped in a morphology layer, in turn embedded in a word, this is analogous to Span
Annotation.
Consider the following example:

<w xml:id="example.p.4.s.2.w.4">
<t>leest</t>
<lemma class="lezen" />
<morphology>

<morpheme class="stem" function="lexical">
<t offset="0">lees</t>

</morpheme>
<morpheme class="suffix" function="inflexional">

<t offset="4">t</t>
</morpheme>

</morphology>
</w>

There is a predefined feature subset (see Features) which you can use with morphemes, it is called function
and denotes the function of the morpheme, the class it takes is defined by the particular set used.
Morphemes allow the same kinds of inline annotation just as words do. We can for instance bind lemma
annotation to the morpheme representing the word’s stem rather than only to the entire word:

<w xml:id="example.p.4.s.2.w.4">
<t>leest</t>
<lemma class="lezen" />
<morphology>

<morpheme xml:id="example.p.4.s.2.w.4.m.1" class="stem"
function="lexical">

<lemma class="lezen" />
<t offset="0">lees</t>

</morpheme>
<morpheme xml:id="example.p.4.s.2.w.4.m.2" class="suffix"
function="inflexional">

<t offset="4">t</t>
</morpheme>

</morphology>
</w>

Similarly, consider the Spanish word or phrase “Dámelo” (give it to me), written as one entity. If this has not
been split during tokenisation, but left as a single token, you can annotate its morphemes, as all morphemes
allow token annotation to be placed within their scope:

<w xml:id="example.p.1.s.1.w.1">
<t>dámelo</t>
<morphology>

<morpheme class="stem">
(continues on next page)

4.6. Subtoken Annotation 235

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

<t offset="0">dá</t>
<lemma class="dar" />
<pos class="v" />

</morpheme>
<morpheme class="suffix">

<t offset="2">me</t>
<lemma class="me" />
<pos class="pron" />

</morpheme>
<morpheme class="suffix">

<t offset="4">lo</t>
<lemma class="lo" />
<pos class="pron" />

</morpheme>
</morphology>

</w>

Unlike words, but similar to Syntactic Annotation, morphemes may also be nested, as they can be expressed
on multiple levels:

<w xml:id="example.p.1.s.1.w.1">
<t>comfortable</t>
<morphology>

<morpheme class="base">
<t offset="0">comfort</t>
<morpheme class="prefix">

<t offset="0">com</t>
</morpheme>
<morpheme class="morph">

<t offset="3">fort</t>
</morpheme>

</morpheme>
<morpheme class="suffix">

<t offset="7">able</t>
</morpheme>

</morphology>
</w>

The next example will illustrate how morphemes can be referred to in span annotation. Here we have a
morpheme, and not the entire word, which forms a named entity:

<w xml:id="example.p.4.s.2.w.4">
<t>CDA-voorzitter</t>
<morphemes>

<morpheme xml:id="example.p.4.s.2.w.1.m.1">
<t offset="0">CDA</t>

</morpheme>
</morphemes>
<entities>

<entity xml:id="entity.1" class="organisation">
<wref id="example.p.4.s.2.w.1.m.1" t="CDA" />

</entity>
</entities>

</w>

The same approach can be followed for other kinds of span annotation. Note that the span annotation layer
(<entities> in the example) may be embedded on various levels. Most commonly on sentence level, but

236 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

also on word level, paragraph level or the global text level.

4.6.2 Phonological Annotation

The smallest unit of annotatable speech in FoLiA is the phoneme level. The phoneme element is a form of
structure annotation used for phonemes. Alike to morphology, it is embedded within a layer phonology which
can be embedded within word/tokens.

Specification

Annotation Category Subtoken Annotation
Declaration <phonological-annotation set="..."> (note: set is optional for this annota-

tion type; if you declare this annotation type to be setless you can not assign classes)
Version History since v0.12
Element <phoneme>

API Class Phoneme (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.

4.6. Subtoken Annotation 237

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Phoneme.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the
speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

Accepted Data <alt> (Alternative Annotation), <altlayers> (Alternative Annotation),
<comment> (Comment Annotation), <correction> (Correction Annotation), <desc> (De-
scription Annotation), <metric> (Metric Annotation), <part> (Part Annotation), <ph>
(Phonetic Annotation/Content), <phoneme> (Phonological Annotation), <relation> (Re-
lation Annotation), <str> (String Annotation), <t> (Text Annotation)

Valid Context <phoneme> (Phonological Annotation), <phonology> (Phonological Annotation)
Feature subsets (extra attributes)

• function

Explanation & Example

The smallest unit of annotatable speech in FoLiA is the phoneme level. The <phoneme> element is a form of
subtoken annotation used for phonemes.
Very much alike to morphology, it is embedded within a layer <phonology> which can be used within
word/token elements (<w>) or directly within higher structure such as utterances (<utt>) if no words are
distinguished:

<utt>
<w xml:id="word" src="book.wav">
<t>book</t>
<ph>b�k</ph>
<phonology>
<phoneme begintime="..." endtime="...">

<ph>b</ph>
</phoneme>
<phoneme begintime="..." endtime="...">

<ph>�</ph>
</phoneme>
<phoneme begintime="..." endtime="...">

<ph>k</ph>
</phoneme>

</phonology>
</w>

</utt>

238 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4.7 Text Markup Annotation

The text content element (<t>) allows within its scope elements of a this category; these are Text Markup
elements, they always contain textual content and apply a certain markup to certain spans of the text. One
of it’s common uses is for styling (emphasis, underlines, etc.). Text markup elements may be nested.
Text markup elements may take sets and classes as most other elements, and any of the remaining common
FoLiA attributes may be freely associated with any of the text-markup elements.
As text markup operates in the scope of the text content element, it is ideally suited for untokenised text. You
should, however, limit your usage of text markup elements and only use them when other existing annotation
elements do not suffice, or for extra verbosity in addition to existing elements.
Each text-markup element, save for one exception, starts with <t- and demands a declaration. The following
subsections will discuss the various text markup elements available.
Text markup elements may carry an optional identifier. However, it may happen that textual content is
repeated on multiple levels (see Text Annotation), which implies the textual markup elements may also be
repeated, but this is not a strict requirement. However, if that is the case, only one of them may carry the
customary xml:id attribute; duplicates may carry the id reference attribute (in the FoLiA namespace instead
of the XML namespace!) which is interpreted as a reference. Such an element should be identical to the
one it refers to, and explicitly include the value (if applicable) to facilitate the job of XML parsers. Certain
elements may also use this id reference attribute to refer to structural elements that cover the very same
data. A markup element may thus take either xml:id or id (a reference to another element); they may never
occur together.
FoLiA defines the following types of text markup annotation:

• Text Markup Annotation – The text content element (<t>) allows within its scope elements of a this
category; these are Text Markup elements, they always contain textual content and apply a certain
markup to certain spans of the text. One of it’s common uses is for styling (emphasis, underlines, etc.).
Text markup elements may be nested.

– Style Annotation – <t-style> – This is a text markup annotation type for applying styling to
text. The actual styling is defined by the user-defined set definition and can for example included
classes such as italics, bold, underline

– Hyphenation – <t-hbr> – This is a text-markup annotation form that indicates where in the
original text a linebreak was inserted and a word was hyphenised.

– Horizontal Whitespace – <t-hspace> – Markup annotation introducing horizontal whitespace

4.7.1 Style Annotation

This is a text markup annotation type for applying styling to text. The actual styling is defined by the
user-defined set definition and can for example included classes such as italics, bold, underline

Specification

Annotation Category Text Markup Annotation
Declaration <style-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History since v0.10
Element <t-style>

API Class TextMarkupStyle (FoLiApy API Reference)
Required Attributes

Optional Attributes

4.7. Text Markup Annotation 239

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TextMarkupStyle.html

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context

240 Chapter 4. Annotation Types

https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Feature subsets (extra attributes)

• font

• size

Explanation

The text markup element <t-style> marks a specific portion of textual concent to be rendered in a specific
style. Styles in turn are simply classes in your set.
Text-markup elements may always be nested.

Example

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <sentence-annotation>
9 <annotator processor="p1" />

10 </sentence-annotation>
11 <linebreak-annotation>
12 <annotator processor="p1" />
13 </linebreak-annotation>
14 <part-annotation>
15 <annotator processor="p1" />
16 </part-annotation>
17 <style-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/styles.foliaset.xml">
18 <annotator processor="p1" />
19 </style-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <s>
27 <t>To <t-style class="italic">be</t-style> or not to be,
that is the

↪→<t-style class="bold"><t-style class="red">question</t-style></t-style>.</t>
28 </s>
29 </text>
30 </FoLiA>

In the next example, features are used rather than nested styles:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.4.2" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>

(continues on next page)

4.7. Text Markup Annotation 241

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

8 <sentence-annotation>
9 <annotator processor="p1" />

10 </sentence-annotation>
11 <linebreak-annotation>
12 <annotator processor="p1" />
13 </linebreak-annotation>
14 <part-annotation>
15 <annotator processor="p1" />
16 </part-annotation>
17 <style-annotation set="https://raw.githubusercontent.com/proycon/folia/

↪→master/setdefinitions/styles.foliaset.xml">
18 <annotator processor="p1" />
19 </style-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <s>
27 <t>To <t-style class="italic">be</t-style> or not to be,
that is the

↪→<t-style class="bold"><feat subset="color" class="red"/>question</t-style>.</t>
28 </s>
29 </text>
30 </FoLiA>

4.7.2 Hyphenation

This is a text-markup annotation form that indicates where in the original text a linebreak was inserted and
a word was hyphenised.

Specification

Annotation Category Text Markup Annotation
Declaration <hyphenation-annotation set="..."> (note: set is optional for this annotation

type; if you declare this annotation type to be setless you can not assign classes)
Version History Since v2.0
Element <t-hbr>

API Class Hyphbreak (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

242 Chapter 4. Annotation Types

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.Hyphbreak.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context

Extra Attributes

• newpage – Can be set to yes to indicate that the break is not just a linebreak, but also
a pagebreak (defaults to no)

• pagenr – The number of the page after the break
• linenr – The number of the line after the break

4.7. Text Markup Annotation 243

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Description & Examples

Hyphenation breaks are a text markup element that indicate where in the original text a word was broken up
for line-wrapping purposes.
The difference between t-hbr and br (Linebreak) is that the hyphenised break is a softer break, only there
for page formatting purposes. The hyphen symbol is by definition implied in its usage, so should never be
explicitly incorporated in the text content. For most intents and purposes, a word with a hyphenised break can
be considered semantically identical to a word without one. The following example demonstrates hyphenation
in the last division, alongside the more classical linebreak:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <whitespace-annotation>
12 <annotator processor="p1" />
13 </whitespace-annotation>
14 <linebreak-annotation>
15 <annotator processor="p1" />
16 </linebreak-annotation>
17 <hyphenation-annotation>
18 <annotator processor="p1" />
19 </hyphenation-annotation>
20 </annotations>
21 <provenance>
22 <processor xml:id="p1" name="proycon" type="manual" />
23 </provenance>
24 </metadata>
25 <text xml:id="example.text">
26 <div xml:id="example.div.1" class="section" n="1">
27 <t>Blah...</t>
28 </div>
29 <whitespace />
30 <br newpage="yes" pagenr="2" />
31 <div xml:id="example.div.2" class="section" n="2">
32 <!-- BR has a double role, it can be used a text markup element as well, as␣

↪→seen on the next line -->
33 <t>To be,
or not to be!</t>
34 </div>
35 <div xml:id="example.div.3" class="section" n="3">
36 <t>Don't leave me bro<t-hbr/>ken and alone!</t>
37 </div>
38 </text>
39 </FoLiA>

4.7.3 Horizontal Whitespace

Markup annotation introducing horizontal whitespace

244 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Note: Do not confuse this with the <whitespace> structure element and <t-whitespace> markup element
that are used for vertical whitespace, see Vertical Whitespace.

Specification

Annotation Category Text Markup Annotation
Declaration <hspace-annotation set="..."> (note: set is optional for this annotation type;

if you declare this annotation type to be setless you can not assign classes)
Version History Since the v2.5.0
Element <t-hspace>

API Class TextMarkupHSpace (FoLiApy API Reference)
Required Attributes

Optional Attributes

• xml:id – The ID of the element; this has to be a unique in the entire document or
collection of documents (corpus). All identifiers in FoLiA are of the XML NCName
datatype, which roughly means it is a unique string that has to start with a letter (not
a number or symbol), may contain numbers, but may never contain colons or spaces.
FoLiA does not define any naming convention for IDs.

• set – The set of the element, ideally a URI linking to a set definition (see Set Definitions
(Vocabulary)) or otherwise a uniquely identifying string. The set must be referred to
also in the Annotation Declarations for this annotation type.

• class – The class of the annotation, i.e. the annotation tag in the vocabulary defined
by set.

• processor – This refers to the ID of a processor in the provenance_data. The processor
in turn defines exactly who or what was the annotator of the annotation.

• annotator – This is an older alternative to the processor attribute, without support
for full provenance. The annotator attribute simply refers to the name o ID of the
system or human annotator that made the annotation.

• annotatortype – This is an older alternative to the processor attribute, without
support for full provenance. It is used together with annotator and specific the type
of the annotator, either manual for human annotators or auto for automated systems.

• confidence – A floating point value between zero and one; expresses the confidence
the annotator places in his annotation.

• datetime – The date and time when this annotation was recorded, the format is
YYYY-MM-DDThh:mm:ss (note the literal T in the middle to separate date from time),
as per the XSD Datetime data type.

• n – A number in a sequence, corresponding to a number in the original document, for
example chapter numbers, section numbers, list item numbers. This this not have to be
an actual number but other sequence identifiers are also possible (think alphanumeric
characters or roman numerals).

• src – Points to a file or full URL of a sound or video file. This attribute is inheritable.
• begintime – A timestamp in HH:MM:SS.MMM format, indicating the begin time of the

speech. If a sound clip is specified (src); the timestamp refers to a location in the
soundclip.

• endtime – A timestamp in HH:MM:SS.MMM format, indicating the end time of the speech.
If a sound clip is specified (src); the timestamp refers to a location in the soundclip.

4.7. Text Markup Annotation 245

https://foliapy.readthedocs.io/en/latest/_autosummary/folia.main.TextMarkupHSpace.html
https://www.w3.org/TR/1999/WD-xmlschema-2-19990924/#NCName

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

• speaker – A string identifying the speaker. This attribute is inheritable. Multiple
speakers are not allowed, simply do not specify a speaker on a certain level if you are
unable to link the speech to a specific (single) speaker.

• tag – Contains a space separated list of processing tags associated with the element.
A processing tag carries arbitrary user-defined information that may aid in processing
a document. It may carry cues on how a specific tool should treat a specific element.
The tag vocabulary is specific to the tool that processes the document. Tags carry
no instrinsic meaning for the data representation and should not be used except to
inform/aid processors in their task. Processors are encouraged to clean up the tags they
use. Ideally, published FoLiA documents at the end of a processing pipeline carry no
further tags. For encoding actual data, use class and optionally features instead.

• xlink:href – Turns this element into a hyperlink to the specified URL
• xlink:type – The type of link (you’ll want to use simple in almost all cases).

Accepted Data <comment> (Comment Annotation), <desc> (Description Annotation),

(Linebreak)

Valid Context

Description & Examples

If normal spacing is not enough and you need to express horizontal whitespace explicitly, then you can use
the <t-hspace> element.

<t>To be<t-hspace class="long" />or not to be</t>

The vocabulary is defined by your set definition and you can assign your own size-interpretation. Tools that
are not aware of your vocabulary should simply render a single space.
An alternative to t-hspace is to use the xml:space="preserve" attribute as described in Preserving whites-
pace (advanced), but the use of <t-hspace> is preferred.
The last section in this example shows horizontal whitespace:

1 <?xml version="1.0" encoding="utf-8"?>
2 <FoLiA xmlns="http://ilk.uvt.nl/folia" version="2.5.0" xml:id="example">
3 <metadata>
4 <annotations>
5 <text-annotation>
6 <annotator processor="p1" />
7 </text-annotation>
8 <division-annotation set="https://raw.githubusercontent.com/

↪→LanguageMachines/uctodata/master/setdefinitions/divisions.foliaset.xml">
9 <annotator processor="p1" />

10 </division-annotation>
11 <whitespace-annotation>
12 <annotator processor="p1" />
13 </whitespace-annotation>
14 <hspace-annotation>
15 <annotator processor="p1" />
16 </hspace-annotation>
17 <linebreak-annotation>
18 <annotator processor="p1" />
19 </linebreak-annotation>
20 <hyphenation-annotation>
21 <annotator processor="p1" />
22 </hyphenation-annotation>

(continues on next page)

246 Chapter 4. Annotation Types

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

(continued from previous page)

23 </annotations>
24 <provenance>
25 <processor xml:id="p1" name="proycon" type="manual" />
26 </provenance>
27 </metadata>
28 <text xml:id="example.text">
29 <div xml:id="example.div.1" class="section" n="1">
30 <t>Blah...</t>
31 </div>
32 <whitespace />
33 <br newpage="yes" pagenr="2" />
34 <div xml:id="example.div.2" class="section" n="2">
35 <!-- BR has a double role, it can be used a text markup element as well, as␣

↪→seen on the next line -->
36 <t>To be,
or not to be!</t>
37 </div>
38 <div xml:id="example.div.3" class="section" n="3">
39 <t>Don't leave me bro<t-hbr/>ken and alone!</t>
40 </div>
41 <div xml:id="example.div.4" class="section" n="4">
42 <t>Space,<t-hspace/>the<t-hspace/>final<t-hspace/>
43 frontier</t>
44 </div>
45 </text>
46 </FoLiA>

4.7. Text Markup Annotation 247

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

248 Chapter 4. Annotation Types

CHAPTER 5

Foreign Annotation

It may happen that you want to include annotations inside your FoLiA that are not actually in FoLiA, but in
some other XML format. Though this is very much discouraged, even more so if FoLiA has proper facilities
for your annotation needs, it may in rare cases be needed; for example if FoLiA has no support yet for a
particular advanced type of annotation or if another scheme has already been in use and conversion is not an
option. It is most suitable for attaching further data to arbitrary elements, though for metadata Submetadata
should always be considered first!
The higher-order annotation element <foreign-data> can be used to accomplish foreign annotations. It acts
as a container in which annotation must be in a different XML namespace, rather than the FoLiA namespace.
The element is allowed almost anywhere: inside structure annotation, inside inline/span annotation, inside
other higher annotation elements, but not inside text content (<t>), phonetic content (<ph>) or text-markup
(<t-*>).
In the following example we attach an annotation in a custom fictitious XML format and namespace to a
FoLiA word:

<w xml:id="w.1">
<t>Hello</t>
<foreign-data xmlns:myformat="http://my.com/custom/format">

<myformat:myannotation myattribute="myvalue" />
</foreign-data>

</w>

Foreign annotation does not need to be declared and, as can not be emphasised enough, should really only
be used when no proper FoLiA solution exists, and even in such cases it is preferable to contact the FoLiA
developers and see if FoLiA can be extended for your needs.. Be aware that generic FoLiA tools and libraries will
usually not process the contents of foreign-data, as it can contain anything by definition, and special-purpose
tools need to be written for your specific use case if you use foreign-data.

249

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

250 Chapter 5. Foreign Annotation

CHAPTER 6

Querying

6.1 XPath

Considering the fact that FoLiA is an XML-based format, XPath and its derivatives are available as tools for
searching in a FoLiA document.
Some common XPath queries are listed below, note that for the sake of brevity and readability the namespace
prefix is omitted. In actual situations you will have to specify the FoLiA namespace with each element, as
XPath unfortunately has no notion of a default namespace.

• XPath query for all paragraphs: //p
• XPath query for all sentences: //s
• XPath query for all words/tokens: //w
• XPath query for all words with lemma X: //w[.//lemma[@class="X"]

This seems simple, but there are important caveats. When formulating XPath queries, however, one needs
to be well aware of how FoLiA works, as XPath is a generic tool that can not take care of specific FoLiA
ideosyncracies for you, unlike FoLiA Query Language (FQL) or the FoLiA programming libraries. These
simple queries will be insufficient when dealing with a document containing Correction Annotation, Alternative
Annotation or even Quote Annotation. You can rely on the Annotation Declarations to know whether this is
the case. To formulate queries that work in all cases, you need to be aware of the exceptions.
For example, if we query all words as //w in a document that contains structural corrections, we also get the
original words prior to correction. If we query for lemmas as //lemma[@class="X"] and our document has
alternative annotations, we may end up also getting lemmas that were specified as an alternative. This is of
course fine if this is what you want, but you need to be aware of it. A construct you will often see in FoLiA
XPath Queries is not(ancestor-or-self::*/X), where X is a particular FoLiA element.
Consider the following more thought-out and more generic queries:

• XPath query for the text of all words/tokens: //w//t[not(ancestor-or-self::*/original) and not(ancestor-
or-self::*/suggestion) and not(ancestor-or-self::*/alt) and not(ancestor-or-self::*/morpheme) and
not(ancestor-or-self::*/str) and not(@class)]//text()‘

– Explanation: The not(@class) predicate is important here
and makes sure to select only the current text content element in case there
are multiple text content elements in different classes. (See Text Annota-
tion). The not(ancestor-or-self::*/morpheme makes sure morphemes are

251

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

excluded, not(ancestor-or-self::*/str) makes sure strings are excluded,
not(ancestor-or-self::*/alt) makes sure alternatives are excluded.

• XPath query for all words with PoS-tag A in set S: //w[.//pos[@set="S" and @class="A" and not(ancestor-or-self::*/original) and not(ancestor-or-self::*/suggestion) and not(ancestor-or-self::*/str) and not(ancestor-or-self(::*/morpheme)]].

– Note: This query assumes the set attribute was set explicitly, i.e. there are multiple possible
sets in the document for this annotation type. If there is only one set for this annotation type,
it would be the default and only appear in the header’s annotation declarations.

• XPath query to select all alternative PoS tags for all words: //w/alt/pos
• XPath query for to obtain sentences except those in quotes: //s[not(ancestor::quote]

– Explanation: When selecting sentences, you often do not want sub-sentences that are part of
a quote, since they may overlap with the larger sentence they form a part of.

When selecting text elements t, you generally want to add not(@class) to the constraint, to select only
the text content elements that have not been assigned an alternative class. Recall that multiple text content
may be present, bearing another class. Omitting this constraint will prevent you from properly retrieving the
current text of a document, as it will also retrieve all this differently typed text content.
Before you release XPath queries on FoLiA documents, make sure to first parse the declarations present in the
Annotation Declarations. Verify that the annotation type with the desired set you are looking for is actually
present, otherwise you need not bother running a query at all. Note that the XPath expression differs based
on whether there is only one set defined for the sought annotation type, or if there are multiple. In the former
case, you cannot use the @set attribute to select, and in the latter case, you must.
As crafting good XPath queries is not trivial and requires knowledge of FoLiA, higher level abstractions are
available in the form FoLiA Query Language (FQL), or the use of dedicated FoLiA libraries.

6.2 FoLiA Query Language (FQL)

Whereas XPath is a very generic query language, the FoLiA Query Language (FQL) is a very specific language,
designed purely for FoLiA. It allows advanced querying and document editing.
FQL statements are separated by newlines and encoded in UTF-8. The expressions are case sensitive, all
keywords are in upper case, all element names and attributes in lower case.
FQL is also strict about parentheses, they are generally either required or forbidden for an expression. Paren-
theses usually indicate a sub-expression, and it is also used in boolean logic.
As a general rule, it is more efficient to do a single big query than multiple standalone queries.
Note that for readability, queries may have been split on multiple lines in the presentation here, whereas in
reality they should be on one.

6.2.1 Global variables

• SET variable$=$value - Sets global variables that apply to all statements that follow. String values
need to be in double quotes. Available variables are: * processor - The ID of the processor *
annotator - The name of the annotator (the use of processor is preferred!) * annotatortype - The
type of the annotator, can be auto or manual (the use of processor is preferred!)

Usually your queries on a particular annotation type are limited to one specific set. To prevent having to enter
the set explicitly in your queries, you can set defaults. The annotation type corresponds to a FoLiA element:

DEFAULTSET entity https://raw.githubusercontent.com/proycon/folia/master/
↪→setdefinitions/namedentitycorrection.foliaset.xml

If the FoLiA document only has one set of that type anyway, then this is not even necessary and the default
will be automatically set.

252 Chapter 6. Querying

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

6.2.2 Provenance

To make use of FoLiA’s ability to register provenance_data, you need to define a processor as follows:

PROCESSOR id "p0" name "mytool" type "auto"

The processor will be created and appended to the provenance chain. If you do not specify an ID, one will be
generated for you automatically, unless the last processor in the chain matches, then that one will be reused.
If you do specify an ID and it already exists, the existing processor will be selected, any subsequent assignments
you make will overwrite the original values.
Processors can be nested using the IN PROCESSOR keyword, the matching rules when omitting an ID apply
here as well, but for subprocessors all candidates are considered rather than only the last processor:

PROCESSOR id "p0.1" name "john doe" type "manual" IN PROCESSOR id "p0" name
↪→"annotationtool" type "auto"

As you see, the PROCESSOR statement allows you to create and select processors. The selected processor will
be used for all subsequent queries, meaning that all annotations make will be associated with that processor.
You can select any existing processor again using PROCESSOR id "id". To deselect processors entirely, use
PROCESSOR NONE.

6.2.3 Declarations

All annotation types in FoLiA need to be declared. FQL does this for you automatically. If you make an edit
of a previously undeclared set, it will be declared for you. These default declarations will never assign default
annotators or annotator types, and if a PROCESSOR statement was issued earlier, it will use that processor.
Explicit declarations are possible using the DECLARE keyword followed by the annotation type you want to
declare, this represented the tag of the respective FoLiA annotation element:

DECLARE entity OF "https://github.com/proycon/folia/blob/master/setdefinitions/
↪→namedentities.foliaset.xml"

The WITH clause is optional, the set following the OF keyword is mandatory for annotation types where you
use a set.
Declarations may be chained, i.e. multiple DECLARE statements may be issued on one line, as well as
prepended to action statements (see next section).
You can declare a processor and use it in a declaration in one line:

PROCESSOR id "p0" name "named-entity-recogniser" version "1.0" DECLARE entity OF
↪→"https://github.com/proycon/folia/blob/master/setdefinitions/namedentities.foliaset.
↪→xml"

Note: If you don’t intend to use FoLiA v2’s provenance mechanism, i.e. processors, then you can declare
default annotators and annotator types the old way:

DECLARE entity OF "https://github.com/proycon/folia/blob/master/setdefinitions/
↪→namedentities.foliaset.xml"
WITH annotator = "me" annotatortype = "manual"

Note that the statement must be on one single line, it is split here only for ease of presentation.

6.2. FoLiA Query Language (FQL) 253

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

6.2.4 Actions

The core part of an FQL statement consists of an action verb, the following are available:
• SELECT <focus expression> [<target expression>] - Selects an annotation
• DELETE <focus expression> [<target expression>] - Deletes an annotation
• EDIT <focus expression> [<assignment expression>] [<target expression>] - Edits an ex-

isting annotation
• ADD <focus expression> <assignment expression> <target expression> - Adds an annota-

tion (to the target expression)
• APPEND <focus expression> <assignment expression> <target expression> - Inserts an an-

notation after the target expression
• PREPEND <focus expression> <assignment expression> <target expression> - Inserts an

annotation before the target expression
Following the action verb is the focus expression, this starts with an annotation type, which is equal to the
FoLiA XML element tag. The set is specified using OF <set> and/or the ID with ID <id>. An example:

pos OF "http://some.domain/some.folia.set.xml"

If an annotation type is already declared and there is only one in document, or if the DEFAULTSET statement
was used earlier, then the OF statement can be omitted and will be implied and detected automatically. If it
is ambiguous, an error will be raised (rather than applying the query regardless of set).
To further filter a the focus, the expression may consist of a WHERE clause that filters on one or more FoLiA
attributes:

• class

• annotator

• annotatortype

• n

• confidence

• src

• speaker

• begintime

• endtime

The following keywords are also available on when the elements contains text and/or phonetic/phonological
content:

• text

• phon

The WHERE statement requires an operator (=,‘‘!=‘‘,‘‘>‘‘,‘‘<,``<=,‘‘>=‘‘,‘‘CONTAINS‘‘,‘‘MATCHES‘‘),
the AND, OR and NOT operators are available (along with parentheses) for grouping and boolean logic. The
operators must never be glued to the attribute name or the value, but have spaces left and right.
We can now show some examples of full FQL queries with some operators:

• SELECT pos OF "http://some.domain/some.folia.set.xml"

• SELECT pos WHERE class = "n" AND annotator = "johndoe"

• DELETE pos WHERE class = "n" AND annotator != "johndoe"

• DELETE pos WHERE class = "n" AND annotator CONTAINS "john"

• DELETE pos WHERE class = "n" AND annotator MATCHES "^john$"

254 Chapter 6. Querying

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

The ADD and EDIT change actual attributes, this is done in the assignment expression that starts with the
WITH keyword. It applies to all the common FoLiA attributes like the WHERE keyword, but has no operator
or boolean logic, as it is a pure assignment function.
SELECT and DELETE only support WHERE, EDIT supports both WHERE and WITH, if both are use
they than WHERE is always before WITH. the ADD action supports only WITH. If an EDIT is done on an
annotation that can not be found, and there is no WHERE clause, then it will fall back to ADD.
Here is an EDIT query that changes all nouns in the document to verbs (assuming a particular set):

• EDIT pos WHERE class = "n" WITH class "v" AND annotator = "johndoe"

The query is fairly crude as it still lacks a target expression: A target expression determines what elements the
focus is applied to, rather than to the document as a whole, it starts with the keyword FOR and is followed
by either an annotation type (i.e. a FoLiA XML element tag) or the ID of an element. The target expression
also determines what elements will be returned. More on this in a later section.
The following FQL query shows how to get the part of speech tag for a word:

SELECT pos FOR ID mydocument.word.3

Or for all words:

SELECT pos FOR w

The ADD action almost always requires a target expression:

ADD pos WITH class "n" FOR ID mydocument.word.3

Multiple targets may be specified, comma delimited:

ADD pos WITH class "n" FOR ID mydocument.word.3 , ID myword.document.word.25

The target expression can again contain a WHERE filter:

SELECT pos FOR w WHERE class != "PUNCT"

Target expressions, starting with the FOR keyword, can be nested:

SELECT pos FOR w WHERE class != "PUNCT" FOR event WHERE class = "tweet"

You may also use the SELECT keyword without focus expression, but only with a target expression. This is
particularly useful when you want to return multiple distinct elements, for instance by ID:

SELECT FOR ID mydocument.word.3 , ID myword.document.word.25

The SELECT keyword can also be used with the special ALL selector that selects all elemens in the scope,
the following two statement are identical and will return all elements in the document:

SELECT ALL
SELECT FOR ALL

It can be used at deeper levels too, the following will return everything under all words:

SELECT ALL FOR w

Target expressions are vital for span annotation, the keyword SPAN indicates that the target is a span (to
do multiple spans at once, repeat the SPAN keyword again), the operator & is used for consecutive spans,
whereas , is used for disjoint spans:

ADD entity WITH class "person" FOR SPAN ID mydocument.word.3 & ID myword.document.
↪→word.25

6.2. FoLiA Query Language (FQL) 255

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

This works with filters too, the & operator enforced a single consecutive span:

ADD entity WITH class "person" FOR SPAN w WHERE text = "John" & w WHERE text = "Doe"

Remember we can do multiple at once:

ADD entity WITH class "person" FOR SPAN w WHERE text = "John" & w WHERE text = "Doe"
SPAN w WHERE text = "Jane" & w WHERE text = "Doe"

The HAS keyword enables you to descend down in the document tree to siblings. Consider the following
example that changes the part of speech tag to “verb”, for all occurrences of words that have lemma “fly”.
The parentheses are mandatory for a HAS statement:

EDIT pos OF "someposset" WITH class = "v" FOR w WHERE (lemma OF "somelemmaset" HAS␣
↪→class = "fly")

Target expressions can be former with either FOR or with IN, the difference is that IN is much stricter, the
element has to be a direct child of the element in the IN statement, whereas FOR may skip intermediate
elements. In analogy with XPath, FOR corresponds to // and IN corresponds to /. FOR and IN may be
nested and mixed at will. The following query would most likely not yield any results because there are likely
to be paragraphs and/or sentences between the wod and event structures:

SELECT pos FOR w WHERE class != "PUNCT" IN event WHERE class = "tweet"

Multiple actions can be combined, all share the same target expressions:

ADD pos WITH class "n" ADD lemma WITH class "house" FOR w WHERE text = "house" OR␣
↪→text = "houses"

It is also possible to nest actions, use parentheses for this, the nesting occurs after any WHERE and WITH
statements:

ADD w ID mydoc.sentence.1.word.1 (ADD t WITH text "house" ADD pos WITH class "n") FOR␣
↪→ID mydoc.sentence.1

Though explicitly specified here, IDs will be automatically generated when necessary and not specified.
The ADD action has two cousins: APPEND and PREPEND. Instead of adding something in the scope of
the target expression, they either append or prepend an element, so the inserted element will be a sibling:

APPEND w (ADD t WITH text "house") FOR w WHERE text = "the"

This above query appends/inserts the word “house” after every definite article.

6.2.5 Text

Our previous examples mostly focussed on part-of-speech annotation. In this section we look at text content,
which in FoLiA is an annotation element too (t).
Here we change the text of a word:

EDIT t WITH text = "house" FOR ID mydoc.word.45

Here we edit or add (recall that EDIT falls back to ADD when not found and there is no further selector) a
lemma and check on text content:

EDIT lemma WITH class "house" FOR w WHERE text = "house" OR text = "houses"

You can use WHERE text on all elements, it will cover both explicit text content as well as implicit text
content, i.e. inferred from child elements. If you want to be really explicit you can do:

256 Chapter 6. Querying

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

EDIT lemma WITH class "house" FOR w WHERE (t HAS text = "house")

Advanced:
Such syntax is required when covering texts with custom classes, such as OCRed or otherwise pre-normalised
text. Consider the following OCR correction:

ADD t WITH text = "spell" FOR w WHERE (t HAS text = "5pe11" AND class = "OCR")

6.2.6 Query Response

We have shown how to do queries but not yet said anything on how the response is returned. This is regulated
using the RETURN keyword:

• RETURN focus (default)
• RETURN parent - Returns the parent of the focus
• RETURN target or RETURN inner-target

• RETURN outer-target

• RETURN ancestor-target

• RETURN alternative

The default focus mode just returns the focus. Sometimes, however, you may want more context and may
want to return the target expression instead. In the following example returning only the pos-tag would not
be so interesting, you are most likely interested in the word to which it applies:

SELECT pos WHERE class = "n" FOR w RETURN target

When there are nested FOR/IN loops, you can specify whether you want to return the inner one (highest
granularity, default) or the outer one (widest scope). You can also decide to return the first common structural
ancestor of the (outer) targets, which may be specially useful in combination with the *SPAN} keyword.
The return type can be set using the FORMAT statement:

• FORMAT xml - Returns FoLiA XML, the response is contained in a simple <results><result/></
results> structure.

• FORMAT single-xml - Like above, but returns pure unwrapped FoLiA XML and therefore only works
if the response only contains one element. An error will be raised otherwise.

• FORMAT json - Returns JSON list
• FORMAT single-json - Like above, but returns a single element rather than a list. An error will be

raised if the response contains multiple.
• FORMAT python - Returns a Python object, can only be used when directly querying the FQL library

without the document server
• FORMAT flat - Returns a parsed format optimised for FLAT. This is a JSON reply containing an HTML

skeleton of structure elements (key html), parsed annotations (key annotations). If the query returns a
full FoLiA document, then the JSON object will include parsed set definitions, (key setdefinitions), and
declarations.

The RETURN statement may be used standalone or appended to a query, in which case it applies to all
subsequent queries. The same applies to the FORMAT statement, though an error will be raised if distinct
formats are requested in the same HTTP request.
When context is returned in target mode, this can get quite big, you may constrain the type of elements
returned by using the REQUEST keyword, it takes the names of FoLiA XML elements. It can be used
standalone so it applies to all subsequent queries:

6.2. FoLiA Query Language (FQL) 257

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

REQUEST w,t,pos,lemma

..or after a query:

SELECT pos FOR w WHERE class!="PUNCT" FOR event WHERE class="tweet" REQUEST w,pos,
↪→lemma

Two special uses of request are REQUEST ALL (default) and REQUEST NOTHING, the latter may be useful in
combination with ADD, EDIT and DELETE, by default it will return the updated state of the document.
Note that if you set REQUEST wrong you may quickly end up with empty results.

6.2.7 Span Annotation

Selecting span annotations is identical to token annotation. You may be aware that in FoLiA span annotation
elements are technically stored in a separate stand-off layers, but you can forget this fact when composing
FQL queries and can access them right from the elements they apply to.
The following query selects all named entities (of an actual rather than a fictitious set for a change) of people
that have the name John:

SELECT entity OF "https://github.com/proycon/folia/blob/master/setdefinitions/
↪→namedentities.foliaset.xml"
WHERE class = "person" FOR w WHERE text = "John"

Or consider the selection of noun-phrase syntactic units (su) that contain the word house:

SELECT su WHERE class = "np" FOR w WHERE text CONTAINS "house"

Note that if the *SPAN} keyword were used here, the selection would be exclusively constrained to single
words “John”:

SELECT entity WHERE class = "person" FOR SPAN w WHERE text = "John"

We can use that construct to select all people named John Doe for instance:

SELECT entity WHERE class = "person" FOR SPAN w WHERE text = "John" & w WHERE text =
↪→"Doe"

Span annotations like syntactic units are typically nested trees, a tree query such as “//pp/np/adj” can be
represented as follows. Recall that the IN statement starts a target expression like FOR, but is stricter on the
hierarchy, which is what we would want here:

SELECT su WHERE class = "adj" IN su WHERE class = "np" IN su WHERE class = "pp"

In such instances we may be most interested in obtaining the full PP:

SELECT su WHERE class = "adj" IN su WHERE class = "np" IN su WHERE class = "pp"␣
↪→RETURN outer-target

The EDIT action is not limited to editing attributes, sometimes you want to alter the element of a span. A
separate RESPAN keyword (without FOR/IN/WITH) accomplishes this. It takes the keyword RESPAN which
behaves the same as a FOR SPAN target expression and represents the new scope of the span, the normal
target expression represents the old scope:

EDIT entity WHERE class= "person" RESPAN ID word.1 & ID word.2 FOR SPAN ID word.1 &␣
↪→ID word.2 & ID word.3

WITH statements can be used still too, they always preceed RESPAN:

258 Chapter 6. Querying

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

EDIT entity WHERE class= "person" WITH class="location" RESPAN ID word.1 & ID word.2␣
↪→FOR SPAN ID word.1 & ID word.2 & ID word.3

6.2.8 Corrections and Alternatives

Both FoLiA and FQL have explicit support for corrections and alternatives on annotations. A correction
is not a blunt substitute of an annotation of any type, but the original is preserved as well. Similarly, an
alternative annotation is one that exists alongside the actual annotation of the same type and set, and is not
authoritative.
The following example is a correction but not in the FoLiA sense, it bluntly changes part-of-speech annotation
of all occurrences of the word fly from n to v, for example to correct erroneous tagger output:

EDIT pos WITH class "v" WHERE class = "n" FOR w WHERE text = "fly"

Now we do the same but as an explicit correction:

EDIT pos WITH class "v" WHERE class = "n" (AS CORRECTION OF "some/correctionset" WITH␣
↪→class "wrongpos")
FOR w WHERE text = "fly"

Another example in a spelling correction context, we correct the misspelling concous to conscious:

EDIT t WITH text "conscious" (AS CORRECTION OF "some/correctionset" WITH class
↪→"spellingerror")
FOR w WHERE text = "concous"

The AS CORRECTION keyword (always in a separate block within parentheses) is used to initiate a correction.
The correction is itself part of a set with a class that indicates the type of correction.
Alternatives are simpler, but follow the same principle:

EDIT pos WITH class "v" WHERE class = "n" (AS ALTERNATIVE) FOR w WHERE text = "fly"

Confidence scores are often associationed with alternatives:

EDIT pos WITH class "v" WHERE class = "n" (AS ALTERNATIVE WITH confidence 0.6)
FOR w WHERE text = "fly"

The AS clause is also used to select alternatives rather than the authoritative form, this will get all alternative
pos tags for words with the text “fly”:

SELECT pos (AS ALTERNATIVE) FOR w WHERE text = "fly"

If you want the authoritative tag as well, you can chain the actions. The same target expression (FOR..)
always applies to all chained actions, but the AS clause applies only to the action in the scope of which it
appears:

SELECT pos SELECT pos (AS ALTERNATIVE) FOR w WHERE text = "fly"

Filters on the alternative themselves may be applied as expected using the WHERE clause:

SELECT pos (AS ALTERNATIVE WHERE confidence > 0.6) FOR w WHERE text = "fly"

Note that filtering on the attributes of the annotation itself is outside of the scope of the AS clause:

SELECT pos WHERE class = "n" (AS ALTERNATIVE WHERE confidence > 0.6) FOR w WHERE text␣
↪→= "fly"

6.2. FoLiA Query Language (FQL) 259

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

When you use AS ALTERNATIVE*, you can combine with with RETURN alternative to return the entire
alternative block in which the alternatives reside, rather than the alternative annotations themselves:

SELECT pos (AS ALTERNATIVE) FOR w WHERE text = "fly" RETURN alternative

Corrections by definition are authoritative, so no special syntax is needed to obtain them. Assuming the part
of speech tag is corrected, this will correctly obtain it, no AS clause is necessary:

SELECT pos FOR w WHERE text = "fly"

Adding AS CORRECTION will only enforce to return those that were actually corrected:

SELECT pos (AS CORRECTION) FOR w WHERE text = "fly"

However, if you want to obtain the original prior to correction, you can do so using AS CORRECTION
ORIGINAL:

SELECT pos (AS CORRECTION ORIGINAL) FOR w WHERE text = "fly"

FoLiA does not just distinguish corrections, but also supports suggestions for correction. Envision a spelling
checker suggesting output for misspelled words, but leaving it up to the user which of the suggestions to accept.
Suggestions are not authoritative and can be obtained in a similar fashion by using the SUGGESTION keyword:

SELECT pos (AS CORRECTION SUGGESTION) FOR w WHERE text = "fly"

Note that AS CORRECTION may take the OF keyword to specify the correction set, they may also take a
WHERE clause to filter:

SELECT t (AS CORRECTION OF "some/correctionset" WHERE class = "confusible") FOR w

The SUGGESTION keyword can take a WHERE filter too:

SELECT t (AS CORRECTION OF "some/correctionset" WHERE class = "confusible" SUGGESTION␣
↪→WHERE confidence > 0.5) FOR w

To add a suggestion for correction rather than an actual authoritative correction, you can do:

EDIT pos (AS CORRECTION OF "some/correctionset" WITH class "poscorrection" SUGGESTION␣
↪→class "n") FOR w ID some.word.1

The absence of a WITH statement in the action clause indicates that this is purely a suggestion. The actual
suggestion follows the SUGGESTION keyword.
Any attributes associated with the suggestion can be set with a WITH statement after the suggestion:

EDIT pos (AS CORRECTION OF "some/correctionset" WITH class "poscorrection" SUGGESTION␣
↪→class "n" WITH confidence 0.8) FOR w ID some.word.1

Even if a WITH statement is present for the action, making it an actual correction, you can still add sugges-
tions:

EDIT pos WITH class "v" (AS CORRECTION OF "some/correctionset" WITH class
↪→"poscorrection" SUGGESTION class "n" WITH confidence 0.8) FOR w ID some.word.1

The SUGGESTION keyword can be chaineed to add multiple suggestions at once:

EDIT pos (AS CORRECTION OF "some/correctionset" WITH class "poscorrection"
SUGGESTION class "n" WITH confidence 0.8
SUGGESTION class "v" wITH confidence 0.2) FOR w ID some.word.1

Another example in a spelling correction context:

260 Chapter 6. Querying

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

EDIT t (AS CORRECTION OF "some/correctionset" WITH class "spellingerror"
SUGGESTION text "conscious" WITH confidence 0.8 SUGGESTION text "couscous" WITH␣
↪→confidence 0.2)
FOR w WHERE text = "concous"

When a correction is made on an element, all annotations below it (recursively) are left intact, i.e. they are
copied from the original element to the new correct element. The same applies to suggestions. Moreover, all
references to the original element, from for instance span annotation elements, will be made into references
to the new corrected elements.
This is not always what you want, if you want the correction not to have any annotations inherited from the
original, simply use AS BARE CORRECTION instead of AS CORRECTION.
You can also use AS CORRECTION with ADD and DELETE.
The most complex kind of corrections are splits and merges. A split separates a structure element such as a
word into multiple, a merge unifies multiple structure elements into one.
In FQL, this is achieved through substitution, using the action SUBSTITUTE :

SUBSTITUTE w WITH text "together" FOR SPAN w WHERE text="to" & w WHERE text="gether"

Sub-queries are common with SUBSTITUTE, the following is equivalent to the above:

SUBSTITUTE w (ADD t WITH text "together") FOR SPAN w WHERE text="to" & w WHERE text=
↪→"gether"

To perform a split into multiple substitutes, simply chain the SUBSTITUTE clause:

SUBSTITUTE w WITH text "each" SUBSTITUTE w WITH TEXT "other" FOR w WHERE text=
↪→"eachother"

Like ADD, both SUBSTITUTE may take assignments (WITH), but no filters (WHERE).
You may have noticed that the merge and split examples were not corrections in the FoLiA-sense; the originals
are removed and not preserved. Let’s make it into proper corrections:

SUBSTITUTE w WITH text "together"
(AS CORRECTION OF "some/correctionset" WITH class "spliterror")
FOR SPAN w WHERE text="to" & w WHERE text="gether"

And a split:

SUBSTITUTE w WITH text "each" SUBSTITUTE w WITH text "other"
(AS CORRECTION OF "some/correctionset WITH class "runonerror")
FOR w WHERE text="eachother"

To make this into a suggestion for correction instead, use the SUGGESTION} folloed by *SUBSTITUTE,
inside the AS clause, where the chain of substitute statements has to be enclosed in parentheses:

SUBSTITUTE (AS CORRECTION OF "some/correctionset" WITH class "runonerror" SUGGESTION␣
↪→(SUBTITUTE w WITH text "each" SUBSTITUTE w WITH text "other"))
FOR w WHERE text="eachother"

6.2.9 Dealing with context

We have seen that with the FOR keyword we can move to bigger elements in the FoLiA document, and with
the HAS keyword we can move to siblings. There are several context keywords that give us all the tools we
need to peek at the context. Like HAS expressions, these need always be enclosed in parentheses.

6.2. FoLiA Query Language (FQL) 261

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

For instance, consider a part-of-speech tagging scenario. If we have a word where the left neighbour is a
determiner, and the right neighbour a noun, we can be pretty sure the word under our consideration (our
target expression) is an adjective. Let’s add the pos tag:

EDIT pos WITH class = "adj" FOR w WHERE (PREVIOUS w WHERE (pos HAS class == "det"))␣
↪→AND (NEXT w WHERE (pos HAS class == "n"))

You may append a number directly to the PREVIOUS/NEXT modifier if you’re interested in further context,
or you may use LEFTCONTEXT/RIGHTCONTEXT/CONTEXT if you don’t care at what position something
occurs:

EDIT pos WITH class = "adj" FOR w WHERE (PREVIOUS2 w WHERE (pos HAS class == "det"))␣
↪→AND (PREVIOUS w WHERE (pos HAS class == "adj")) AND (RIGHTCONTEXT w WHERE (pos HAS␣
↪→class == "n"))

Instead of the NEXT and PREVIOUS keywords, a target expression can be used with the SPAN keyword and
the & operator:

SELECT FOR SPAN w WHERE text = "the" & w WHERE (pos HAS class == "adj") & w WHERE␣
↪→text = "house"

Within a SPAN keyword, an expansion expression can be used to select any number, or a certain number, of
elements. You can do this by appending curly braces after the element name (but not attached to it) and
specifying the minimum and maximum number of elements. The following expression selects from zero up to
three adjectives between the words the and house:

SELECT FOR SPAN w WHERE text = "the" & w {0,3} WHERE (pos HAS class == "adj") & w␣
↪→WHERE text = "house"

If you specify only a single number in the curly braces, it will require that exact number of elements. To
match at least one word up to an unlimited number, use an expansion expression such as {1,}
If you are now perhaps tempted to use the FoLiA document server and FQL for searching through large corpora
in real-time, then be advised that this is not a good idea. It will be prohibitively slow on large datasets as
this requires smart indexing, which this document server does not provide. You can therefore not do this
real-time, but perhaps only as a first step to build an actual search index.
Other modifiers are PARENT and and ANCESTOR. PARENT will at most go one element up, whereas
ANCESTOR will go on to the largest element:

SELECT lemma FOR w WHERE (PARENT s WHERE text CONTAINS "wine")

Instead of PARENT, the use of a nested FOR is preferred and more efficient:

SELECT lemma FOR w FOR s WHERE text CONTAINS "wine"

Let’s revisit syntax trees for a bit now we know how to obtain context. Imagine we want an NP to the left of
a PP:

SELECT su WHERE class = "np" AND (NEXT su WHERE class = "pp")

… and where the whole thing is part of a VP:

SELECT su WHERE class = "np" AND (NEXT su WHERE class = "pp") IN su WHERE class = "vp"

… and return that whole tree rather than just the NP we were looking for:

SELECT su WHERE class = "np" AND (NEXT su WHERE class = "pp") IN su WHERE class = "vp
↪→" RETURN target

262 Chapter 6. Querying

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

6.2.10 Relations

FoLiA’s Relation Annotation is a higher-order annotation type that allows linking between arbitrary annota-
tions, and even between documents or to external resources.

Internal Relations

In FQL, there is a special construction using a sub-query to actively select the items you want to link to
(within the same document), the sub-query start with the TO keyword, which behaves identical to SELECT:

ADD relation WITH class "wh-movement" (TO su ID "su.moved") FOR su ID "su.1"

Multiple targets may be chained chained by simply adding extra sub-queries (each in its own set of parentheses).

External Relations

For external relations, you usually don’t need the individual references and the TO statement won’t work. For
those types you just set the href attribute, possibly on the relation, combined also with the format attribute.
Here we add a external relationship to the relevant Wikipedia page on a named entity about the Dalai Lama:

ADD relation WITH class "wikipedia" href "https://en.wikipedia.org/wiki/Dalai_Lama"␣
↪→format "text/html" FOR entity ID "example.p.1.s.1.entity.1"

6.2.11 Shortcuts

Classes are prevalent all throughout FoLiA, it is very common to want to select on classes. To select words
with pos tag n for example you can do:

SELECT w WHERE (pos HAS class = "n")

Because this is so common, there is a shortcut. Specify the annotation type directly preceeded by a colon,
and a HAS statement that matches on class will automatically be constructed:

SELECT w WHERE :pos = "n"

The two statements are completely equivalent.
Another third alternative to obtain the same result set is to use a target expression:

SELECT pos WHERE class = "n" FOR w RETURN target

This illustrates that there are often multiple ways of obtaining the same result set. Due to lazy evaluation in
the FQL library, there is not much difference performance-wise.
Another kind of shortcut exists for setting text on structural elements. The explicit procedure to add a word
goes as follows:

ADD w (ADD t WITH text "hello") IN ID some.sentence

The shortcut is:

ADD w WITH text "hello" IN ID some.sentence

6.2. FoLiA Query Language (FQL) 263

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

264 Chapter 6. Querying

CHAPTER 7

Form

In addition to the normal form of FoLiA XML, there is an additional explicit form. This form of XML
serialisation is functionally equivalent to the normal form, but any defaults that are implicit in the normal
form are expressed explicitly instead. Documents in either form can always be converted to eachother without
any gain or loss of information, it is just the accessibility of the certain information that is facilitated in explicit
mode, at the cost of redundancy, bigger filesize and higher memory footprint.
The reason for the existance of this explicit form is to help parsers, especially those not implementing the
full FoLiA logic. Parsers that can not deal with a document in normal form should themselves invoke
foliavalidator --explicit to do the conversion to explicit form prior to parsing it themselves.
The explicit form is declared by the attribute form="explicit" on the FoLiA root tag. When this form
attribute is not set to explicit (or absent) altogether, behaviour is unchanged and normal form is used.
In explicit form, all defaults are made explicit:

• All annotations that carry a set have a set attribute, sets never refer to aliases.
• All annotations associated with a processor have an explicit processor attribute.
• Layers themsleves carry a set attribute if the span elements within carry a set.
• All text-content elements explicitly declare their class (so <t> will become <t class="current">)
• Predefined features/subsets are serialised explicitly using <feat> elements rather than as XML at-

tributes.
Certain FoLiA internals are made explicit:

• All annotation elements get a typegroup attribute that makes explicit what kind of annotation category
we are dealing with. Values are: structure, inline, span, higherorder, textmarkup, content, layer. So <w>
becomes <w typegroup="structure">, <pos> becomes <pos typegroup="inline">. This allows
for example xpath expressions like: give me the deepest structural ancestor.

265

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

266 Chapter 7. Form

CHAPTER 8

Implementations

8.1 Libraries

Currently, the following FoLiA library implementations exist. Both follow a highly object-oriented model in
which FoLiA XML elements correspond with classes.

• FoLiApy - A FoLiA library in Python.
• Library documentation and API reference
• libfolia - A FoLiA library in C++.

Both libraries are shipped as part of our LaMachine software distribution.
Information regarding implementation of certain elements for these two libraries is present in the status boxes
throughout this documentation. The following table shows the level of FoLiA support in these libraries:
The following table lists FoLiA library implementations, the last column lists the predecessor of FoLiApy,
which was part of PyNLPl.

Table 1: FoLiA Library Implementations
Category Name FoLiApy libfolia folia-rust pynlpl.formats.folia

General Language Python 3.5+ C++ Rust Python 2.7 and <=3.4
General Uses official specification yes yes yes yes
General Maintenance Status active active active deprecated; superseded by FoLiApy
General Maturity stable stable alpha stable
General Lead developer Maarten van Gompel Ko van der Sloot Maarten van Gompel Maarten van Gompel

General Supports latest version 2.3 2.3 2.3 1.5
General Supports earliest version 0.1 0.1 2.0 0.1

Implementation Full in-memory representation? default default default default
Implementation Streaming parser? optional optional not yet optional
Implementation Element representation class hierarchy (OOP) class hierarchy (OOP) other class hierarchy (OOP)
Implementation Memory-saving encoding no no yes no

Continued on next page

267

https://github.com/proycon/foliapy
https://foliapy.readthedocs.io
https://github.com/LanguageMachines/libfolia
https://proycon.github.io/LaMachine
https://github.com/proycon/pynlpl

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Table 1 – continued from previous page
Category Name FoLiApy libfolia folia-rust pynlpl.formats.folia
Supported Features Structure annotation yes yes yes yes
Supported Features Inline annotation yes yes yes yes
Supported Features Span annotation yes yes yes yes
Supported Features Text mark-up yes yes yes yes
Supported Features Subtoken annotation (e.g. morphology) yes yes yes yes
Supported Features Alternatives yes yes limited yes
Supported Features Corrections yes yes limited yes
Supported Features Substrings yes yes yes yes
Supported Features Relations yes yes limited yes
Supported Features Native Metadata yes yes yes yes
Supported Features Submetadata yes yes no yes
Supported Features Foreign Metadata yes yes no yes
Supported Features Provenance data yes yes yes no
Supported Features Foreign Annotations yes yes no yes
Supported Features Features yes yes yes yes

Validation Shallow Validation yes yes no yes
Validation Text Consistency Validation yes yes no yes
Validation Deep Validation yes no no yes
Validation … with RDF+XML sets yes no no yes
Validation … with RDF+turtle sets yes no no yes
Validation … with legacy XML sets yes no no yes
Validation RelaxNG schema generation yes no no yes

Serialisation XML (normal form) yes yes yes yes
Serialisation JSON (not standarised) yes no no yes
Serialisation RDF no no no no

Querying select() mechanism yes yes yes yes
Querying FoLiA Query Language (FQL) yes no no yes
Querying … CQL support through pynlpl no no yes
Querying Document findwords() method yes yes no yes
Querying Introspection into FoLiA specification yes yes yes yes

Quality Control Integration tests yes yes yes (limited) yes

Documentation API reference yes no yes yes
Documentation Tutorial yes no no yes

Legacy D-Coi read compatibility no no no yes

Parsing Details Predefined subsets as attributes yes yes yes yes
Parsing Details Compression? gz+bz2 gz+bz2 none gz+bz2
Parsing Details Default set yes yes yes yes
Parsing Details Set aliases yes yes ? yes
Parsing Details Default processor yes yes yes no FoLiA v2
Parsing Details Default annotator (old-style) yes yes no yes

Serialisation Details Predefined subsets as attributes yes yes no yes
Serialisation Details Default set yes yes yes yes
Serialisation Details Set aliases yes yes ? yes
Serialisation Details Default processor yes yes yes no FoLiA v2
Serialisation Details Default annotator (old-style) yes yes no yes

Continued on next page

268 Chapter 8. Implementations

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

Table 1 – continued from previous page
Category Name FoLiApy libfolia folia-rust pynlpl.formats.folia
Serialisation Details Write explicit form yes no no no

8.2 Tools

The following tool collections are available:
• FoLiA Tools - A set of Python-based command-line tools for FoLiA processing. Contains a validator,

convertors, and more.
• Tool overview and documentation
• FoLiAutils - A set of command-line utilities for working with FoLiA, powered by libfolia.

8.2. Tools 269

https://github.com/proycon/foliapy
https://folia-tools.readthedocs.io
https://github.com/LanguageMachines/foliautils

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

270 Chapter 8. Implementations

CHAPTER 9

Guidelines

This section collects guidelines, tips, do’s and don’ts and conventions in dealing with FoLiA documents.

9.1 For data creators/publishers

1. Always validate all FoLiA documents you create and intend to publish!. Use one of the official
validation tools (foliavalidator and folialint). See Validation. This will already catch most of
the issues that could arise out of not following these guidelines.

2. Never invent custom XML elements and attributes. If you really must, make sure they are in a different
XML namespace. See Foreign Annotation.

3. If you want to encode something and FoLiA does not seem to offer a good solution yet, or if you are
simply unsure whether the solution you want to use is appropriate, contact the FoLiA developers on our
Issue tracker. FoLiA can be extended in collaboration. Do not simply add your own elements/attributes.

4. Mind the sets you use. Creating and publishing set definitions is recommended but not strictly mandatory
for most uses. See Set Definitions (Vocabulary)

5. Identifiers should never change: Once you assign an identifier to something and publish your data: do
not change any identifier that is in use.

6. All annotation types you use must be declared, see Annotation Declarations. Take care not to declare
annotation types that you don’t actually use in your document unless you have good reason to believe
the annotation type will be added soon.

9.2 For developers

1. Using a high-level FoLiA programming library, if available for your programming language, is strongly
recommended over parsing/writing/querying the XML yourself, as it will make things a lot easier and
save a lot of work!

2. Always use the latest version of FoLiA and its libraries.
3. Mind the sets you use. Actively check whether the sets uses in a document are in fact the ones your

software handles, i.e. check the declarations (see Annotation Declarations). For example, do not blindly
assume any part-of-speech tag will be in your intended vocabulary. See Set Definitions (Vocabulary)

271

https://github.com/proycon/folia/issues/

FoLiA: Format for Linguistic Annotation - Documentation, Release v2.0 (rev 9.0)

4. Considering that FoLiA is vast, it is fine to only support a subset of a certain annotation types in your
software, or not to support certain complexities such as Correction Annotation. Just make sure to check
the declarations based on which you can reject processing a document.

5. The structure of a text as represented in FoLiA documents can differ greatly between documents,
as different types of documents (books,articles,papers,poetry,etc..) are structured differently. The
annotation declaration in the metadata tell you what structural types you can encounter, but they don’t
convey precisely how these structures are nested. Unless you have very good reason to do so, do NOT
assume your documents are neatly subdivided into e.g. only paragraphs and sentences. There may be
lists, figures, divisions. Generally spoken, you’ll often want to descend into the deepest structural nodes
that have text. The FoLiA libraries provide a high-level API for you to do this.

6. If you don’t use a FoLiA library, you may want to consider accepting only FoLiA documents in so-called
explicit form (see Form). Explicit form does not use any implicit defaults but makes everything explicit
in the XML. This means the logic in your parser can be kept less complicated. You can turn any
explicit form document into a normal form one and vice versa (without loss). If you get a normal form
document (which is the norm), run an external tool like foliavalidator --explicit to turn it into
explicit form before parsing it. It’s strongly recommended not to shift this burden to the user as he/she
may be confused by it.

9.3 Conventions

Conventions are good practices that you will encounter and are encouraged to follow, but they remain just
conventions rather than strict guidelines.

1. Most FoLiA software assigns verbose identifiers for all elements. We use the the ID of the FoLiA
document as the base identifier and then append the element type and sequence number, all delimited
by dots. The IDs are cumulative in nature, so we get for instance example.p.1.s.2.w.3 for the third
word in the second sentence in the first paragraph of the document with ID example. See Identifiers

2. Adding metadata to your document is always encouraged.
• genindex
• search

272 Chapter 9. Guidelines

Bibliography

[vanGompel2014] Maarten van Gompel & Martin Reynaert (2014). FoLiA: A practical XML format for linguis-
tic annotation - a descriptive and comparative study; Computational Linguistics in the Nether-
lands Journal; 3:63-81; 2013. (PDF) (BibTeX)

[Burnard2007] Lou Burnard & Syd Bauman (2007). TEI P5: Guidelines for Electronic Text Encoding and
Interchange. (HTML)

[Ide2004] Nancy Ide & Laurent Romary (2005). International standard for a linguistic annotation frame-
work. In: Natural Language Engineering. Volume 10. pp 211-225.

[Heid2010] Ulrich Heid and Helmut Schmid and Kerstin Eckart and Erhard Hinrichs (2010). A Corpus
Representation Format for Linguistic Web Services: The D-SPIN Text Corpus Format and its
Relationship with ISO Standards. In: Proceedings of the Seventh International Conference on
Language Resources and Evaluation (LREC’10).

[Fokkens2014] Antske Fokkens and Aitor Soroa and Zuhaitz Beloki and German Rigan and Willem Robert
van Hage and Piek Vossen. NAF: The NLP Annotation Format. (PDF)

[RDF] Richard Cyganiak, David Wood and Markus Lanthaler (2014). RDF 1.1 Concepts and Abstract
Syntax (website)

[SKOS] Alistair Miles & Sean Bechhofer (2009). SKOS: Simple Knowledge Organization System Refer-
ence (website)

273

http://www.clinjournal.org/sites/clinjournal.org/files/05-vanGompel-Reynaert-CLIN2013.pdf
http://www.clinjournal.org/biblio/export/bibtex/39
https://tei-c.org/release/doc/tei-p5-doc/en/html/SG.html
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/2009/REC-skos-reference-20090818/

	Introduction
	Annotation Types
	Vocabulary sets
	Validation
	Metadata
	Annotation Declarations
	Provenance Data
	Document Metadata

	Document structure
	Annotation Instances
	Common attributes
	Identifiers

	Speech
	Example

	Hyperlinks

	Metadata
	Annotation Declarations
	Set definitions
	Document Metadata
	Submetadata
	Provenance Data

	Set Definitions (Vocabulary)
	Introduction
	Classes
	Class Hierarchy
	Subsets
	Features

	Constraints
	SKOS

	Annotation Types
	Content Annotation
	Text Annotation
	Phonetic Annotation/Content
	Raw Content

	Higher-order Annotation
	Correction Annotation
	Gap Annotation
	Relation Annotation
	Span Relation Annotation
	Metric Annotation
	String Annotation
	Alternative Annotation
	Comment Annotation
	Description Annotation
	External Annotation

	Inline Annotation
	Part-of-Speech Annotation
	Lemmatisation
	Domain/topic Annotation
	Sense Annotation
	Error Detection Annotation (DEPRECATED)
	Subjectivity Annotation (DEPRECATED)
	Language Annotation

	Span Annotation
	Syntactic Annotation
	Chunking
	Entity Annotation
	Dependency Annotation
	Time Segmentation
	Coreference Annotation
	Semantic Role Annotation
	Predicate Annotation
	Observation Annotation
	Sentiment Annotation
	Statement Annotation
	Modality Annotation
	Group Annotations: Inline Annotations on Span Annotations

	Structure Annotation
	Token Annotation
	Division Annotation
	Paragraph Annotation
	Head Annotation
	List Annotation
	Figure Annotation
	Vertical Whitespace
	Linebreak
	Sentence Annotation
	Event Annotation
	Quote Annotation
	Note Annotation
	Reference Annotation
	Table Annotation
	Part Annotation
	Utterance Annotation
	Entry Annotation
	Term Annotation
	Definition Annotation
	Example Annotation
	Hidden Token Annotation

	Subtoken Annotation
	Morphological Annotation
	Phonological Annotation

	Text Markup Annotation
	Style Annotation
	Hyphenation
	Horizontal Whitespace

	Foreign Annotation
	Querying
	XPath
	FoLiA Query Language (FQL)
	Global variables
	Provenance
	Declarations
	Actions
	Text
	Query Response
	Span Annotation
	Corrections and Alternatives
	Dealing with context
	Relations
	Shortcuts

	Form
	Implementations
	Libraries
	Tools

	Guidelines
	For data creators/publishers
	For developers
	Conventions

	Bibliography

